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Abstract

A recently introduced nonlinear homogenization method [J. Mech. Phys. Solids 50 ( 2002) 737–757] is used to es-

timate the effective behavior and the associated strain and stress fluctuations in two-phase, power-law composites with

aligned-fiber microstructures, subjected to anti-plane strain, or in-plane strain loading. Using the Hashin–Shtrikman

estimates for the relevant ‘‘linear comparison composite,’’ results are generated for two-phase systems, including fiber-

reinforced and fiber-weakened composites. These results, which are known to be exact to second-order in the heter-

ogeneity contrast, are found to satisfy all known bounds. Explicit analytical expressions are obtained for the special

case of rigid-ideally plastic composites, including results for arbitrary contrast and fiber concentration. The effective

properties, as well as the phase averages and fluctuations predicted for these strongly nonlinear composites appear to be

consistent with deformation mechanisms involving shear bands. More specifically, for the case where the fibers are

stronger than the matrix, the predictions appear to be consistent with the shear bands tending to avoid the fibers, while

the opposite would be true for the case where the fibers are weaker.
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1. Introduction

This paper is concerned with the application of the recently developed ‘‘second-order’’ homogenization

method of Ponte Casta~nneda (2002a) to two-phase power-law composites with arbitrary heterogeneity

contrast. One of the interesting aspects of this new method is that, unlike the previous version (Ponte

Casta~nneda, 1996), it incorporates information about the fluctuations of the relevant fields, providing

nonlinear estimates that are exact to second order in the heterogeneity contrast and that do not violate

rigorous bounds.

For completeness and later reference, it is recalled here that bounds of the Hashin–Shtrikman type for

nonlinear composites were first given by Talbot and Willis (1985), using a generalization of the variational
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principles of Hashin and Shtrikman (1962) for nonlinear media. More general types of bounds, including

three-point bounds, were obtained by Ponte Casta~nneda (1991) by means of new variational principles

(Ponte Casta~nneda, 1992) involving ‘‘linear comparison composites.’’ Equivalent bounds for the special class

of power-law composites were generated by Suquet (1993) using linear comparison composites and H€oolder-
type inequalities. For more comprehensive reviews of the nonlinear homogenization literature, the reader is

referred to Ponte Casta~nneda and Suquet (1998) and Willis (2000). Field fluctuations in composites with

linear elastic properties have been studied by Kreher and Pompe (1985) and Bobeth and Diener (1987),

among others. Corresponding studies have apparently not yet been carried out for nonlinear composites in

the mechanical context, although a start along this direction was given in Ponte Casta~nneda (2002a,b). There
are also some recent results for weakly nonlinear composites (Pellegrini, 2000), as well as some theoretical

results for strongly nonlinear composites (Pellegrini, 2001; Ponte Casta~nneda, 2001) in the context of con-

ductivity.
2. Effective behavior

The assumption is made here that the material is composed of N different phases, which are randomly

distributed in a specimen occupying a volume X, at a length scale that is much smaller than the size of the

specimen and scale of variation of the loading conditions. The constitutive behavior of the nonlinear phases

is characterized by convex strain potentials wðrÞ ðr ¼ 1; . . . ;NÞ, such that the local stress–strain relation is

determined by:
r ¼ owðrÞ

oe
ðeÞ; wðx; eÞ ¼

XN
r¼1

vðrÞðxÞwðrÞðeÞ; ð1Þ
where the characteristic functions vðrÞ are 1 if the position vector x is in phase r and 0 otherwise. The ef-
fective behavior of the composite is characterized by the effective strain potential. Using the minimum

potential energy principle it can be written as:
eWW ð�eeÞ ¼ min
e2Kð�eeÞ

hwðx; eÞi ¼ min
e2Kð�eeÞ

XN
r¼1

cðrÞhwðrÞðeÞiðrÞ; ð2Þ
where angular brackets h�i and h�ir are used to denote volume averages over the composite (X) and over the

phase r (Xr), respectively, cðrÞ are the volume fractions of the phases, and Kð�eeÞ denotes the set of kine-

matically admissible strain fields, given by:
Kð�eeÞ ¼ fe j there is u with e ¼ 1

2
ru
h

þ ðruÞT
i
in X; u ¼ �eex on oXg; ð3Þ
where u is the displacement field and �ee is a constant second-order tensor. Note that, in this case, u is such

that the average strain is simply hei ¼ �ee.
Alternatively, the behavior of the phases can be characterized by stress potentials, uðrÞ, which are dual to

the wðrÞ, such that the local strain–stress relation is determined by:
e ¼ ouðrÞ

or
ðrÞ; uðx; rÞ ¼

XN
r¼1

vðrÞðxÞuðrÞðrÞ: ð4Þ
According to the minimum complementary energy principle, the effective stress potential, eUU , can be
written as:
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eUU ð�rrÞ ¼ min
r2Sð�rrÞ

huðx; rÞi ¼ min
r2Sð�rrÞ

XN
r¼1

cðrÞhuðrÞðrÞiðrÞ; ð5Þ
where Sð�rr) is the set of self-equilibrated stresses that are consistent with the average stress condition

hri ¼ �rr.
It can be shown (see, for example, Ponte Casta~nneda and Suquet, 1998) that the average stress in the

composite, �rr, is related to the average strain, �ee, through the relations:
�rr ¼ o eWW
o�ee

ð�eeÞ and �ee ¼ o eUU
o�rr

ð�rrÞ; ð6Þ
which provide the macroscopic constitutive relation for the composite. Thus, if we know the effective energy

functions, we can obtain the stress–strain relation for the nonlinear composite. Note that these functions

are very difficult to compute, in general, since they correspond to the solution of a set of nonlinear partial

differential equations with randomly oscillating coefficients. In the next section the new variational prin-

ciples are used to generate estimates for eWW and eUU .
3. Second-order homogenization estimates

In this section, an outline of the second-order homogenization method of Ponte Casta~nneda (2002a) is
given. The idea is to construct a linear comparison composite whose effective potential can be used to es-

timate the effective potential of the nonlinear composite. The homogenization is thus carried out for a linear

heterogeneous medium, for which many accurate estimates are already available (see, for example, Milton,

2002; Torquato, 2001). Let the comparison composite have a strain potential of the form:
wTðx; eÞ ¼
XN
r¼1

vðrÞðxÞwðrÞ
T ðeÞ; ð7Þ
where the vðrÞ are the same characteristic functions as the nonlinear composite�s (i.e. both composites have

the same microstructure), and the phase potentials wðrÞ
T are second-order Taylor-type expressions:
wðrÞ
T ðeÞ ¼ wðrÞðeðrÞÞ þ owðrÞ

oe
ðeðrÞÞ � ðe� eðrÞÞ þ 1

2
ðe� eðrÞÞ � LðrÞ

0 ðe� eðrÞÞ: ð8Þ
In these last expressions, eðrÞ is a uniform reference strain, L
ðrÞ
0 is a symmetric, constant fourth-order

tensor, and wðrÞ is the nonlinear potential of phase r. Differentiating this potential gives a stress–strain

relation:
r ¼ owðrÞ

oe
ðeðrÞÞ þ L

ðrÞ
0 ðe� eðrÞÞ ¼ sðrÞ þ L

ðrÞ
0 e; ð9Þ
where the stress polarization tensors sðrÞ ¼ owðrÞ=oeðeðrÞÞ � L
ðrÞ
0 eðrÞ are mathematically equivalent to thermal

stress tensors, since they are independent of the strain. Also note that L
ðrÞ
0 corresponds to the modulus

tensor of the linear phase. The effective potential associated with the linear comparison composite with

local potential given by (7) and (8) can be written as (Laws, 1973; Willis, 1981):
eWWTð�eeÞ ¼ min
e2Kð�eeÞ

hwTðx; eÞi ¼ ~ff þ ~ss � �eeþ 1

2
�ee � eLL0�ee; ð10Þ
where ~ff , ~ss and eLL0 are the relevant effective energy at zero applied strain, the effective polarization, and
effective modulus tensor, respectively.
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The idea of the second-order procedure is to choose, within certain simplifying assumptions, the ref-

erence strains and modulus tensors of the above-defined linear comparison composite, in such a way as to

generate the best possible estimates for the nonlinear potential eWW through known estimates for the linear

potential eWWT. This optimization procedure, which involves some approximations, is not repeated here for
brevity (see Ponte Casta~nneda (2002a) for details). In any event, the optimal values of the variables eðrÞ and

L
ðrÞ
0 are given by:
Fig. 1.

new ‘‘g
eðrÞ ¼ �eeðrÞ; ð11aÞ
and
owðrÞ

oe
ð̂eeðrÞÞ � owðrÞ

oe
ð�eeðrÞÞ ¼ L

ðrÞ
0 ðêeðrÞ � �eeðrÞÞ; ð11bÞ
where the êeðrÞ are constant second-order tensors, arising from the introduction of suitable error measures

(Ponte Casta~nneda, 2002a), that depend on the second moments of the fluctuations of the strain through
appropriate traces of the relations:
ðêeðrÞ � �eeðrÞÞ � ðêeðrÞ � �eeðrÞÞ ¼ hðe� �eeðrÞÞ � ðe� �eeðrÞÞiðrÞ¼: CðrÞ
e ; ð12Þ
where CðrÞ
e serves to denote the covariance tensor of the strain field in phase r of the linear comparison

composite. It should be emphasized that, in general, the equality cannot be enforced for all components of

the tensorial relation (12), and that is why only certain traces of this relation are used.

Thus, the reference strains eðrÞ are identified with the phase averages of the strain, and the modulus

tensors L
ðrÞ
0 follow from the so-called ‘‘generalized secant condition’’ (11b). Fig. 1 shows a one-dimensional

graphical representation of this condition. Note that, if the strain field in a phase is quite homogeneous, i.e.

the fluctuations are small, the modulus tensor of the corresponding linearized phase in the comparison
composite will be close to the tangent modulus tensor. But if the field has a heterogeneous distribution, the

new method will result in a less stiff modulus tensor.

The average strains and the covariance tensors of the actual strain field may be computed ‘‘self-

consistently’’ from the linear comparison composite using the following identities (Ponte Casta~nneda and

Suquet, 1998):
One-dimensional sketch of the nonlinear stress–strain relation and different types of linearizations: LðrÞ
0 , LðrÞ

sec and LðrÞ
tan refer to the

eneralized secant’’, secant, and tangent modulus, respectively.
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�eeðrÞ ¼ 1

cðrÞ
oð eWWT � �ff Þ

osðrÞ
; and CðrÞ

e ¼ 2

cðrÞ
o eWWT

oL
ðrÞ
0

: ð13Þ
In the first relation,
�ff ¼
XN
r¼1

cðrÞf ðrÞ; f ðrÞ ¼ wðrÞð�eeðrÞÞ � sðrÞ � �eeðrÞ � 1

2
�eeðrÞ � LðrÞ

0 �eeðrÞ
and the L
ðrÞ
0 are held fixed, while in the second, the �eeðrÞ are held fixed.

Finally, the effective potential of the nonlinear composite (2) may be re-expressed in terms of only the
variables �eeðrÞ and êeðrÞ via the relation (Ponte Casta~nneda, 2002a):
eWW ð�eeÞ ¼
XN
r¼1

cðrÞ wðrÞðêeðrÞÞ
�

� owðrÞ

oe
ð�eeðrÞÞ � ðêeðrÞ � �eeðrÞÞ

�
: ð14Þ
Knowing the effective potential eWWT of the linear comparison composite as a function of the phase moduli
L

ðrÞ
0 , and the polarizations sðrÞ, the variables �eeðrÞ and êeðrÞ can then be computed using (13), and an estimate

for the nonlinear potential may be obtained via (14). Several methods are available to estimate and bound

the effective potential of a linear composite, such as the Hashin–Shtrikman and self-consistent methods. If

the method used is exact to second order in the heterogeneity contrast, it can be shown that the estimate

(14) is also exact to second order, and therefore in agreement with the small-contrast expansion of Suquet

and Ponte Casta~nneda (1993).

Next, consider the case of isotropic, incompressible phases with wðrÞðeÞ ¼ /ðrÞðeeÞ, where e is assumed to

be traceless, and ee is the von Mises equivalent strain, defined in terms of the strain deviatoric tensor ed by
ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þed � ed

p
. For this broad class of potentials, Ponte Casta~nneda (2002b) proposed, as an approxi-

mation, (incompressible) tensors L
ðrÞ
0 with principal axes aligned with the average strain, such that:
L
ðrÞ
0 ¼ 2kðrÞ0 EðrÞ þ 2lðrÞ

0 FðrÞ: ð15Þ
Here, EðrÞ and FðrÞ are fourth-order projection tensors (Ponte Casta~nneda, 1996) defined by EðrÞ ¼
ð2=3Þ�eeðrÞd � �ee

ðrÞ
d , EðrÞ þ FðrÞ ¼ K, with �ee

ðrÞ
d ¼ �eeðrÞ=�eeðrÞe , such that EðrÞEðrÞ ¼ EðrÞ, FðrÞFðrÞ ¼ FðrÞ, EðrÞFðrÞ ¼

FðrÞEðrÞ ¼ 0. Also, K is the standard fourth-order isotropic shear projection tensor. Note that although the

nonlinear phases are isotropic, the phases of the linear comparison composite are anisotropic. With this

choice of L
ðrÞ
0 , it follows from (11b) that the traceless tensors êeðrÞ have components ‘‘parallel’’ and ‘‘per-

pendicular’’ to the average fields, which, from (12), are given by:
êeðrÞk ¼ �eeðrÞe þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
EðrÞ � CðrÞ

e

q
; êeðrÞ? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
FðrÞ � CðrÞ

e

q
; ð16Þ
where êeðrÞk ¼ 2
3
êeðrÞ � EðrÞêeðrÞ

� �1=2
and êeðrÞ? ¼ 2

3
êeðrÞ � FðrÞêeðrÞ

� �1=2
, so that ðêeðrÞe Þ2 ¼ ðêeðrÞk Þ2 þ ðêeðrÞ? Þ2. The ‘‘generalized

secant’’ conditions (11b) reduce to:
3kðrÞ0 êeðrÞk

�
� �eeðrÞe

�
¼ /ðrÞ0 ðêeðrÞe Þ

êeðrÞk

êeðrÞe

� /ðrÞ0 �eeðrÞe

� �
; 3lðrÞ

0 ¼ /ðrÞ0 ðêeðrÞe Þ
êeðrÞe

: ð17Þ
Finally, expression (14) for eWW simplifies to:
eWW ð�eeÞ ¼
XN
r¼1

cðrÞ /ðrÞðêeðrÞe Þ
h

� /ðrÞ0 �eeðrÞe

� �
êeðrÞk

�
� �eeðrÞe

�i
: ð18Þ
Proceeding in a completely analogous fashion, estimates for eUU can be obtained using the stress
potentials uðrÞ and their corresponding second-order Taylor-type expressions uðrÞT :
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eUU ð�rrÞ ¼
XN
r¼1

cðrÞ uðrÞðr̂rðrÞÞ
�

� ouðrÞ

or
ð�rrðrÞÞ � ðr̂rðrÞ � �rrðrÞÞ

�
; ð19Þ
where the uniform reference stresses rðrÞ have been identified with the average stresses in each phase �rrðrÞ,

and r̂rðrÞ are constant tensors that depend on the stress fluctuations through appropriate traces of the

relations:
ðr̂rðrÞ � �rrðrÞÞ � ðr̂rðrÞ � �rrðrÞÞ ¼ hðr� �rrðrÞÞ � ðr� �rrðrÞÞiðrÞ¼: CðrÞ
r ; ð20Þ
where CðrÞ
r is the covariance tensor of the stress field in phase r. The phases of the linear thermoelastic

comparison composite have strain polarizations gðrÞ ¼ ouðrÞ=orð�rrðrÞÞ �M
ðrÞ
0 �rrðrÞ, and compliances M

ðrÞ
0 given

by the secant-type condition:
ouðrÞ

or
ðr̂rðrÞÞ � ouðrÞ

or
ð�rrðrÞÞ ¼ M

ðrÞ
0 ðr̂rðrÞ � �rrðrÞÞ: ð21Þ
Again, consider the case of isotropic, incompressible phases with uðrÞðrÞ ¼ wðrÞðreÞ, where re is the von

Mises equivalent stress, defined in terms of the stress deviatoric tensor rd by re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þrd � rd

p
. As in the

strain formulation, for this class of potentials, we restrict attention to (incompressible) compliance tensors

whose principal axes are aligned with the average stress:
M
ðrÞ
0 ¼ 1

2kðrÞ0

EðrÞ þ 1

2lðrÞ
0

FðrÞ; ð22Þ
where EðrÞ ¼ ð3=2Þ�rrðrÞ
d � �rr

ðrÞ
d , EðrÞ þ FðrÞ ¼ K, with �rr

ðrÞ
d ¼ �rrðrÞ=�rrðrÞ

e , are the appropriate projection tensors in

this case. From (20) and (21) it follows that:
r̂rðrÞ
k ¼ �rrðrÞ

e þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
EðrÞ � CðrÞ

r

q
; r̂rðrÞ

? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
FðrÞ � CðrÞ

r

q
; ð23Þ
where r̂rðrÞ
k ¼ 3

2
r̂rðrÞ � EðrÞr̂rðrÞ� �1=2

and r̂rðrÞ
? ¼ 3

2
r̂rðrÞ � FðrÞr̂rðrÞ� �1=2

, are the ‘‘parallel’’ and ‘‘perpendicular’’ com-

ponents of the traceless tensors r̂rðrÞ, respectively. The ‘‘generalized secant conditions’’ (21) reduce to:
1

3kðrÞ0

r̂rðrÞ
k

�
� �rrðrÞ

e

�
¼ wðrÞ0 ðr̂rðrÞ

e Þ
r̂rðrÞ
k

r̂rðrÞ
e

� wðrÞ0 �rrðrÞ
e

� �
;

1

3lðrÞ
0

¼ wðrÞ0 ðr̂rðrÞ
e Þ

r̂rðrÞ
e

: ð24Þ
Finally, expression (19) can be written as:
eUU ð�rrÞ ¼
XN
r¼1

cðrÞ wðrÞðr̂rðrÞ
e Þ

h
� wðrÞ0 �rrðrÞ

e

� �
r̂rðrÞ
k

�
� �rrðrÞ

e

�i
: ð25Þ
Relations (14) and (19) provide two different ways to estimate the effective behavior of the nonlinear

composites. However, it is important to emphasize that, because of the approximations introduced in the

optimization procedure, these estimates are not exactly equivalent (see Ponte Casta~nneda, 2002a), and a

small duality gap is expected, in general.

A third way to approximate the constitutive behavior of the nonlinear composite is to use, directly, the
constitutive relations of the associated linear comparison composite, as given by (Laws, 1973):
�rr ¼ ~ssþ eLL0�ee; �ee ¼ ~ggþfMM0�rr: ð26Þ

Making use of well-known expressions for the modulus and compliance tensors eLL0 and fMM0, and the

stress and strain polarizations ~ss and ~gg, together with the expressions for the phase polarizations sðrÞ and gðrÞ

in terms of the phase averages �eeðrÞ and �rrðrÞ, and modulus tensors L
ðrÞ
0 and M

ðrÞ
0 , these expressions may be

re-written more explicitly as (Ponte Casta~nneda, 2002a):
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�rr ¼
XN
r¼1

cðrÞ
owðrÞ

oe
ð�eeðrÞÞ; and �ee ¼

XN
r¼1

cðrÞ
ouðrÞ

or
ð�rrðrÞÞ: ð27Þ
These two stress–strain relations for the nonlinear composite are exactly equivalent to each other, be-

cause there is no duality gap for the linear comparison composite. However, again for reasons related to the

approximations mentioned above, they can be shown to be different from the corresponding relations for

the nonlinear composite generated by direct derivation (6) of the second-order estimates (14) and (19). They

can be thought of as improved versions of the ‘‘affine’’ estimates of Masson et al. (2000), in the same sense

as the second-order estimates of Ponte Casta~nneda (2002a) are improved versions of the earlier second-order
estimates of Ponte Casta~nneda (1996). Unfortunately, these new ‘‘affine’’ estimates are not exact to second-

order in the contrast, and are expected to be less accurate than the corresponding estimates (14) and (19).

Finally, since the linear phase potentials wðrÞ
T and uðrÞT are dual to each other, it is worth noting that the

following duality relations hold between the strain/moduli variables in (14) and stress/compliance variables

in (19):
�rrðrÞ ¼ owðrÞ

oe
ð�eeðrÞÞ; �eeðrÞ ¼ ouðrÞ

or
ð�rrðrÞÞ;

r̂rðrÞ ¼ owðrÞ

oe
ðêeðrÞÞ; êeðrÞ ¼ ouðrÞ

or
ðr̂rðrÞÞ;

M
ðrÞ
0 ¼ L

ðrÞ
0

� ��1

;

ð28Þ
provided �ee and �rr are taken to be related by expressions (26), or equivalently, by expressions (27).
4. Two-phase, power-law fibrous composites under anti-plane or in-plane loading

In this section we consider fibrous composites with incompressible power-law phases subject to anti-

plane or in-plane loading. The phase strain and stress potentials are given by:
wðrÞðeÞ ¼ e0r
ðrÞ
0

1þ m
ee
e0

� 	1þm

; ð29aÞ

uðrÞðrÞ ¼ e0r
ðrÞ
0

1þ n
re

rðrÞ
0

 !1þn

; ð29bÞ
respectively. In these expressions, m is the strain-hardening parameter, such that 06m6 1, n ¼ 1=m is the

corresponding nonlinearity exponent, rðrÞ
0 is the flow stress of phase r, e0 is a reference strain, and the ee and

re are the von Mises equivalent strain and stress, already introduced in the previous section. The stress–

strain relation for such a material is given by:
r ¼ ow
oe

ðeÞ ¼ �pIþ 2

3

r0

e0

ee
e0

� 	m�1

ed; ð30Þ
where p ¼ �trðrÞ=3 is the indeterminate, hydrostatic stress associated with the incompressibility condition

trðeÞ ¼ 0. Note that m ¼ 1 and m ¼ 0 represent linear and rigid-perfectly plastic behavior, respectively. This

model is commonly used to characterize time-independent plastic deformation of metals, as well as their

time-dependent viscous deformation (e.g. high temperature creep). In the first case, the deformations are
infinitesimal and r and e represent the infinitesimal stress and strain tensors, respectively. In the second

case, the deformations are finite and r and e are identified with the Cauchy stress and Eulerian strain-rate,
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respectively. Then, m becomes a strain-rate sensitivity parameter. Although we will continue to use only

infinitesimal stresses and strains below, reference will also be made to the rate-sensitive case, without

further clarification.

The infinitely long fibers are assumed to be aligned and perfectly bonded to the matrix, and to have
circular cross section with diameter much smaller than the dimensions of the specimen. The distribution of

the fibers in the transverse plane is assumed random and isotropic, so the composite is transversely isotropic.

Furthermore, from the homogeneity of the potentials (29a) and (29b) in their corresponding fields, it

follows that a transversely isotropic composite, made up of power-law phases with the same exponent m
and the same reference strain e0, subject to anti-plane or in-plane loading, has effective potentials of the

form (29a) and (29b). They can be written as:
eWW ð�eeÞ ¼ e0~rr0

1þ m
�eee
e0

 !1þm

; ð31aÞ

eUU ð�rrÞ ¼ e0~rr0

1þ n
�rre

~rr0

 !1þn

; ð31bÞ
where �eee and �rre are the equivalent average strain and stress, respectively. For anti-plane loading along the

3-direction they reduce to �eee ¼ ð2=
ffiffiffi
3

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ee213 þ �ee223

p
and �rre ¼ ð

ffiffiffi
3

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rr2
13 þ �rr2

23

p
, and for in-plane loading they

reduce to �eee ¼ ð2=
ffiffiffi
3

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ee212 þ 1

4
ð�ee11 � �ee22Þ2

q
and �rre ¼ ð

ffiffiffi
3

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rr2
12 þ 1

4
ð�rr11 � �rr22Þ2

q
. The effective flow stress ~rr0 is

a function of the nonlinearity, the contrast, and concentration of fibers, and it completely characterizes the

effective behavior.

Before proceeding to the computation of the effective potentials (31a) and (31b) for the fibrous com-

posites, we note that the effective energy (10) of the N -phase thermoelastic comparison composite simplifies

greatly when the composite has only two-phases. In this case, the Levin relations (Levin, 1967) can be used

to obtain the effective thermal stress tensor in terms of the effective elastic tensor. The effective energy then

takes the form:
eWWTð�eeÞ ¼ �ff þ �ss � �eeþ 1
2
�ee � �LL0�eeþ 1

2
�ee
h

þ ðDL0Þ�1ðDsÞ
i
� ðeLL0 � �LL0Þ �ee

h
þ ðDL0Þ�1ðDsÞ

i
; ð32Þ
where the overbar denotes volume averages, DL0 ¼ L
ð1Þ
0 � L

ð2Þ
0 and Ds ¼ sð1Þ � sð2Þ. Note that the only

nonexplicit term in this expression is the tensor of effective moduli ~LL0 for a two-phase, linear-elastic

composite. Estimates of the Hashin and Shtrikman (1963) type for such linear composites with particulate-
type microstructures (i.e., inclusions of phase 2 dispersed in a matrix of phase 1) have been given by Willis

(1977, 1978) and Ponte Casta~nneda and Willis (1995). The relevant expression for the effective modulus

tensor is:
eLL0 ¼
X2
r¼1

cðrÞLðrÞ
0 I
h

þ Pð0ÞðLðrÞ
0 � Lð0ÞÞ

i�1 X2
s¼1

cðsÞ I
h(

þ Pð0ÞðLðsÞ
0 � Lð0ÞÞ

i�1

)�1

; ð33Þ
where the modulus tensor Lð0Þ of the homogeneous reference medium in the Hashin–Shtrikman approxi-

mation must be identified with the modulus tensor of the matrix phase (L
ð1Þ
0 , in this case), and Pð0Þ is a

microstructural tensor, related to the Eshelby tensor, which depends on Lð0Þ, the shape and orientation of

the particles, as well as on the shape and orientation of the two-point correlation functions for their dis-

tribution in space. These estimates are known to be exact to first order in the volume fraction of the

particles and to second order in the heterogeneity contrast. They tend to underestimate the interaction
between particles, but can give fairly accurate estimates for small to intermediate concentrations.
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Since the nonlinear phases are isotropic, and are isotropically distributed in the transverse plane, under

the assumptions of anti-plane or in-plane strain loading, it is reasonable to assume that the average strain

field in the phases is aligned with the average strain, i.e. �ee
ðrÞ
d ¼ �ee ¼ �ee=�eee for all r, such that the phase pro-

jection tensors become identical for both phases, and are given by E ¼ ð2=3Þ�ee� �ee and F ¼ K� E. Then,
using the fact that Lð0Þ has the form (15), and making use of the long-fiber limit in the appropriate ex-

pressions for the tensor Pð0Þ, it can be shown (see Ponte Casta~nneda, 1996) that under in-plane and anti-plane

loading, the in-plane and anti-plane components of the tensor Pð0Þ, respectively, may be written in the form:
Pð0Þ ¼
ffiffiffi
k

p

2ð1þ
ffiffiffi
k

p
Þkð0Þ

Eþ 1

2ð1þ
ffiffiffi
k

p
Þlð0Þ

F; ð34Þ
where k ¼ kð0Þ=lð0Þ is the anisotropy ratio of the homogeneous reference medium, and the projection tensors

have to be suitably interpreted.
With expressions (32)–(34) defining explicitly the effective energy of the relevant linear comparison

composite, we have everything required to compute the effective energies of the power-law fibrous com-

posites. Thus, introducing (29a) and (31a) into (18), we arrive at the following expression for the nor-

malized effective flow stress:
~rr0

rð1Þ
0

¼ cð1Þ
êeð1Þe

�eee

 !1þm24 � ð1þ mÞ �eeð1Þe

�eee

 !m
êeð1Þk

�eee

0@ � �eeð1Þe

�eee

1A35þ cð2Þ
rð2Þ
0

rð1Þ
0

�eeð2Þe

�eee

 !1þm

; ð35Þ
where it is recalled that the labels 1 and 2 have been used to identify the matrix and fiber phases, re-

spectively. Note that �eeð2Þe can be eliminated in favor of �eeð1Þe using the average strain condition, i.e.
�eeð2Þe ¼ ð�eee � cð1Þ�eeð1Þe Þ=cð2Þ, and that the variables êeð2Þk and êeð2Þ? do not appear in (35) because there are no

fluctuations in phase 2. This last result is associated with the Hashin–Shtrikman approximation and can be

verified by noting that the tensor Pð0Þ is independent of L
ð2Þ
0 in this case. Expression (35) allows the com-

putation of ~rr0 as a function of the rate-sensitivity m, the fiber concentration cð2Þ, and the contrast rð2Þ
0 =rð1Þ

0 ,

in terms of the variables �eeð1Þe , êeð1Þk and êeð1Þ? , which, in turn, must be determined from a set of three algebraic

nonlinear equations in these unknowns arising from expressions (13), together with (32)–(34), as well as
relations (17) and (16).

The stress potential (29b) can be used as the starting point to generate alternative estimates for ~rr0. In this

case, the effective stress potential of the linear comparison composite is given in terms of the compliances

and strain polarizations by an expression analogous to (32). In turn, the effective compliance tensor fMM0 is

given in terms of the compliances by an expression analogous to (33), where the relevant microstructural

tensor is related to the P-tensor (34) by Qð0Þ ¼ Mð0Þ� ��1 � Mð0Þ� ��1
Pð0Þ Mð0Þ� ��1

. From (25), the normalized

effective flow stress may be expressed in terms of the stress variables via:
~rr0

rð1Þ
0

¼ cð1Þ
r̂rð1Þ
e

�rre

 !1þn248<: � ð1þ nÞ �rrð1Þ
e

�rre

 !n
r̂rð1Þ
k

�rre

0@ � �rrð1Þ
e

�rre

1A35þ cð2Þ
rð2Þ
0

rð1Þ
0

 !�n
�rrð2Þ
e

�rre

 !1þn
9=;

�1=n

; ð36Þ
where the variables �rrð1Þ
e , r̂rð1Þ

k , and r̂rð1Þ
? may be obtained from expressions completely analogous to the above-

mentioned expressions in the context of the variables �eeð1Þe , êeð1Þk and êeð1Þ? . However, they may also be computed

with the help of the duality relations (28).

Finally, a third expression for ~rr0 is obtained by making use of the affine version of the estimates,

as specified by relations (27). For example, the first of them gives the expression:
~rr0

rð1Þ
0

¼ cð1Þ
�eeð1Þe

�eee

 !m

þ cð2Þ
rð2Þ
0

rð1Þ
0

�eeð2Þe

�eee

 !m

: ð37Þ
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Expressions (35)–(37) generalize corresponding expressions for the extreme cases of rigid particles and

voids (infinite contrast) given by Ponte Casta~nneda (2002b). This author also gave estimates of the self-

consistent type for these special case, where the fluctuations are nonzero in both phases in general. As a

consequence of the duality gap, these three expressions are expected to give slightly different predictions for
~rr0 for any m different from 1 (the linear limit). However, as verified in the next section, these expressions all

agree in the ideally plastic (rate-insensitive) limit.

It is emphasized that because of the above-stated reasons relating to expression (34), all the results

presented below, with the appropriate interpretations, are valid for both anti-plane and in-plane loading of

the two-phase fibrous composites, even if the stress and strain fields would obviously differ in detail due

to the geometric differences between anti-plane and in-plane loading conditions.

4.1. Hashin–Shtrikman estimates for rigid-perfectly plastic phases

The above expressions simplify considerably for the special case of rigid-perfectly plastic behavior, which

corresponds to setting m ¼ 0 in potentials (29a) and (29b). However when taking the limit m ! 0, we must

consider two cases separately.

If the fibers are stronger than the matrix (rð2Þ
0 =rð1Þ

0 P 1) the solution can be shown to reduce to that for

rigid particles, regardless of the contrast. In this case, the average strain in the particles is zero, and in the

matrix we have �eeð1Þe ¼ �eee=cð1Þ, êe
ð1Þ
k ! 1, and êeð1Þ? ¼ 0. The average stress in the matrix is the flow stress,

i.e. �rrð1Þ
e ¼ rð1Þ

0 , and the stress fluctuations are such that r̂rð1Þ
k ¼ rð1Þ

0 and r̂rð1Þ
? ¼ 0, respectively. All three of

the above expressions for the effective flow stress, (35)–(37), reduce to the result:
~rr0=r
ð1Þ
0 ¼ 1: ð38Þ
That is, there is no reinforcement effect by the harder fibers in this case.

If the fibers are weaker than the matrix (rð2Þ
0 =rð1Þ

0 < 1), it is important to realize that when m ! 0, the

average strain in the matrix goes to zero exponentially, �eeð1Þe � e�aðkÞ=m, in such a way that the average stress

in this phase, which is proportional to �eeð1Þe

� �m
, is finite and below rð1Þ

0 . Thus, in the matrix �eeð1Þe ¼ 0, so that
�eeð2Þe ¼ �eee=cð2Þ, and from relations (16):
êeð1Þk

�eee
¼ 1ffiffiffiffiffiffiffiffiffi

2cð2Þ
p 1

k1=4
;

êeð1Þ?
�eee

¼ 1ffiffiffiffiffiffiffiffiffi
2cð2Þ

p k1=4; ð39Þ
where the anisotropy ratio k is determined as a function of the contrast and concentration from:
k3=4

1� k
¼

ffiffiffiffiffiffiffi
cð2Þ

2

r
1

 
� rð2Þ

0

rð1Þ
0

ffiffiffiffiffiffiffiffiffiffiffi
1þ k

p

1� k

!
; ð40Þ
which follows from the generalized secant condition (17) in phase 1.

The corresponding phase average and fluctuations of the stress can be deduced from (28). They are given

in terms of the anisotropy ratio by:
�rrð1Þ
e

rð1Þ
0

¼ 1� kffiffiffiffiffiffiffiffiffiffiffi
1þ k

p ;
r̂rð1Þ
k

rð1Þ
0

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ k

p ;
r̂rð1Þ
?

rð1Þ
0

¼
ffiffiffi
k

pffiffiffiffiffiffiffiffiffiffiffi
1þ k

p : ð41Þ
Finally, expressions (35)–(37) for the normalized effective flow stress all simplify to:
~rr0

rð1Þ
0

¼ cð2Þ
rð2Þ
0

rð1Þ
0

þ ð1� cð2ÞÞ 1� kffiffiffiffiffiffiffiffiffiffiffi
1þ k

p : ð42Þ
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When rð2Þ
0 =rð1Þ

0 ! 0, these expressions reduce to the results of Ponte Casta~nneda (2002b) for the special case

of aligned cylindrical voids distributed isotropically in a rigid-perfectly plastic matrix with zero hydrostatic

strain.

4.2. Small contrast expansions

As already mentioned, estimates (35) and (36) are exact to second order in the heterogeneity contrast,

that is, they both agree with the exact second-order asymptotic expansion of Ponte Casta~nneda and Suquet

(1995), which for this case can be written as:
~rr0 ¼ hr0i �
1

2

1þ mffiffiffiffi
m

p þ m
hr2

0i � hr0i2

hr0i
: ð43Þ
The first term in this expansion corresponds to the Voigt upper bound. Note that the range of validity of

(43) vanishes as m ! 0. In fact, the estimate for the rigid-perfectly plastic limit (m ¼ 0) has an expansion of

a different form, which actually depends on whether the fibers are stronger or weaker than the matrix. Thus,

for rð2Þ
0 =rð1Þ

0 P 1 the result is independent of the contrast, i.e. ~rr0 ¼ rð1Þ
0 , while for rð2Þ

0 =rð1Þ
0 < 1 it is given by:
~rr0 ¼ hr0i �
3

2
1
�

� cð2Þ
�1=3 hr2

0i � hr0i2

hr0i

 !2=3

; ð44Þ
which is the small-contrast expansion of expression (42).

On the other hand, the affine estimate (37), which is known not to be exact to second order in the

contrast, has an expansion of the form:
~rr0 ¼ hr0i �
1

2

hr2
0i � hr0i2

hr0i
; ð45Þ
which does not agree with (43) for any m, except, of course, for m ¼ 1. Moreover, it is independent of the

nonlinearity, which first appears in the next order term. However, the range of validity of this expansion

also tends to zero in the limit as m tends to zero, where it agrees with the expressions given above for the

corresponding energy estimates. Interestingly, this expression coincides with the second-order expansion

of the variational estimate of Ponte Casta~nneda (1991), which is a rigorous upper bound for ~rr0.
5. Results and discussion

Here, results from Section 4 for anti-plane and in-plane loading are presented as a function of the strain-

rate-sensitivity m and fiber concentration cð2Þ, for two values of the heterogeneity contrast––one

corresponding to stronger fibers (rð2Þ
0 =rð1Þ

0 ¼ 5) and the other to weaker fibers (rð2Þ
0 =rð1Þ

0 ¼ 0:2). The new
‘‘second-order’’ estimates for the effective flow stress are compared with rigorous bounds and other lin-

earization schemes. For brevity, they will be denoted by the labels SOE(W ), SOE(U ) and SOE(A), corre-
sponding respectively to the strain-potential formulation (35), the stress-potential formulation (36), and the

constitutive-relation (affine) formulation (37). The corresponding ‘‘old’’ second-order estimates of Ponte

Casta~nneda (1996) will be denoted by OSOE(W ), OSOE(U ) and OSOE(A). Recall that these estimates make

use of a similar linear comparison composite except that it uses the tangent moduli of the phases evaluated

at the phase averages. The ‘‘variational’’ Hashin–Shtrikman estimates of Ponte Casta~nneda (1991) provide

rigorous upper bounds for all other nonlinear Hashin–Shtrikman estimates, and, in particular, for the
second-order estimates. These bounds make use of the secant moduli of the phases evaluated at the second

moments of the fields (Suquet, 1995). The Voigt and Reuss estimates are also included for comparison
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purposes. These are rigorous, microstructure-independent upper and lower bounds, obtained from uniform

strain and stress trial fields, respectively.
5.1. Fibers stronger than the matrix

Fig. 2a shows various estimates of the Hashin–Shtrikman type for the effective flow stress of a fiber-

reinforced composite, normalized by the flow stress of the matrix, ~rr0=r
ð1Þ
0 , as a function of the strain-rate-

sensitivity m, for a given contrast (rð2Þ
0 =rð1Þ

0 ¼ 5) and concentration of fibers (cð2Þ ¼ 25%). It is observed that

all the new estimates (SOE) lie between the variational upper and Reuss lower bounds for all values of m. It
is also observed that the old second-order estimates (OSOE) lie higher than the corresponding new esti-

mates (SOE), and, in fact, it can be verified that the OSOE(A) violates the variational upper bound for some

values of m close to 1.

Furthermore, while the W- and U-type estimates are different for both the new and the old second-order

estimates, it can be seen that the associated duality gap is quite small in general. Moreover, this gap

vanishes in the linear case, m ¼ 1, where both estimates go to the classical Hashin–Shtrikman estimate, and

in the extremely nonlinear rigid-perfectly plastic case, m ¼ 0, where both versions go to the Reuss lower

bound. Note that as the nonlinearity n ¼ 1=m increases, the reinforcement effect becomes smaller and fi-
nally vanishes in the rigid-perfectly plastic limit. Fig. 2b shows the SOE(U ) estimates for the normalized

effective flow stress as a function of fiber concentration cð2Þ for several values of the strain-rate-sensitivity

(m ¼ 0, 0.1, 0.2, 1). (The SOE(W ) and SOE(A) estimates are not included in this figure as they are very close

to the corresponding SOE(U ) estimates.) The main observation here is that the dependence of the effective

flow stress on the fiber concentration cð2Þ becomes progressively weaker with decreasing values of m.
However, for very high concentrations, i.e. cð2Þ ! 1, the estimates become very steep as m decreases, and

in the limiting case m ¼ 0 the estimate presents a jump from 0 to 5.

The dependence on m of the phase averages and fluctuations of the strains associated with the new es-
timates are shown in Fig. 3a, normalized by the equivalent applied strain �eee. The average strain in the fibers

(the stronger phase) can be shown to decay exponentially as m ! 0, �eeð2Þe � e�a=m, so that in the ideally plastic

limit the average stress in this phase, �rrð2Þ
e =rð2Þ

0 � �eeð2Þe

� �m � Oð1Þ, remains below the flow stress rð2Þ
0 . Recall that

the fields were assumed constant inside the fibers, hence there are no fluctuations in phase 2, so that the

modulus tensor in the linearized phase is the tangent moduli. The fluctuations in the matrix are seen to
Fig. 2. Effective flow stress normalized by the flow stress of the matrix for a contrast of 5: (a) as a function of the strain-rate-sensitivity

for a concentration of 25%; (b) as a function of the fiber concentration for several values of m. Labels 1 and 2 refer to the matrix and

fibers, respectively.



Fig. 3. Phase averages and fluctuations of the strain, normalized by the equivalent applied strain �eee, for a contrast of 5: (a) as a function
of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for m ¼ 0:1. Labels 1 and 2 refer to

the matrix and fibers, respectively.
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increase with the nonlinearity, meaning the strain field becomes more heterogeneous. Moreover, they ac-

tually blow up in the ideally plastic limit (m ¼ 0), which is an unexpected result. Note also that these fluc-

tuations are isotropic in the linear case, but become anisotropic as the nonlinearity increases, and they are

always higher in the parallel direction. When m ¼ 0, the stress–strain curve is ‘‘flat’’, the variables �eeð1Þ and êeð1Þ

become aligned, and since neither of them vanishes, the modulus tensor in the linearized matrix tends to the

tangent moduli (which has zero parallel component). This is why the new and the old versions of the estimate

coincide in this case. The phase averages and fluctuations of the strain for m ¼ 0:1 are shown in Fig. 3b as a
function of the fiber concentration. For this and smaller values of m, the average strain inside the fibers is

almost negligible, except as cð2Þ ! 1, when �eeð2Þe =�eee ! 1. Since the fibers practically do not deform, the average

strain in the matrix is approximately �eeð1Þe =�eee � 1=cð1Þ, which goes to infinity as cð2Þ ! 1. As expected, there are

no fluctuations for cð2Þ ¼ 0, since the composite is actually a homogeneous material (the matrix) and hence

the fields are constant. As the concentration of fibers increases, the strain field becomes more heterogeneous

and thus the fluctuations are higher, and they are seen to blow up when cð2Þ ! 1. But when normalized

with the phase average �eeð1Þe , it can be shown that êeð1Þk =�eeð1Þe ! const: and êeð1Þ? =�eeð1Þe ! const: in this limit.

Fig. 4a shows the corresponding phase averages and fluctuations of the stress normalized by the flow
stresses of the phases, as functions of m. The equivalent applied stress has been set equal to the flow stress of

the matrix, i.e. �rre ¼ rð1Þ
0 . Since the stress–strain curve ‘‘flattens’’ as m decreases, and the strain in the matrix

does not vanish (see Fig. 3a), the stress fluctuations become smaller, meaning the stress field becomes more

homogeneous. Note that, unlike the strain field, the stress field has higher fluctuations in the perpendicular

direction. Again, the stress fluctuations are isotropic in the linear case and anisotropic for general values of

m, but they vanish when m ¼ 0, i.e. the stress field becomes constant. The variables �rrð1Þ and r̂rð1Þ are the same

in this limit, and so the compliance tensor of the linearized matrix becomes the tangent compliance. As

already mentioned, the average stress in the fibers (the stronger phase) remains below the flow stress rð2Þ
0 for

all values of m. The phase averages and fluctuations of the stress for m ¼ 0:1 (continuous lines) can be seen

in Fig. 4b, as a function of the fiber concentration. When cð2Þ ¼ 0 the stress fluctuations in the matrix

vanish, and are seen to increase with concentration in both directions. Note that for m ¼ 0 the average

stresses remain below the corresponding flow stresses, except when cð2Þ ¼ 0, where the average stress in the

matrix (weaker phase) reaches the flow stress.

At this point, some comments about the rigid-perfectly plastic limit (m ¼ 0) are appropriate. For defi-

niteness, the comments will be made in the specific context of anti-plane strain loading, which is easier to



Fig. 4. Phase averages and fluctuations of the stress, normalized by the flow stress rðrÞ
0 of the corresponding phase, for a contrast of 5:

(a) as a function of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for two values of

m. The equivalent applied stress �rre has been set equal to rð1Þ
0 . Labels 1 and 2 refer to the matrix and fibers, respectively.
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Fig. 5. Rigid-perfectly plastic composite subject to antiplane shear in the vertical direction: (a) when the fibers are stronger than the

matrix the shear bands go through the matrix; (b) when the fibers are weaker than the matrix the shear bands go through the fibers.
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visualize than the corresponding plane-strain case. First, there is no duality gap in this limit. Both, SOE(W )

and SOE(U ) estimates give no reinforcement effect due to the presence of stronger fibers (see Fig. 2), except

when cð2Þ ! 1. The solution actually reduces to that of rigid particles, regardless of the heterogeneity

contrast. It is known from the work of Drucker (1966) that in this case the exact solution corresponds to

straight shear bands passing through the matrix, the weaker phase, at least at low concentrations of fibers
(see Fig. 5a). The deformation is localized in these bands, which correspond to discontinuities in the dis-

placement field. Note that the results of Fig. 3a, which shows that the average strain in the fibers is zero

when m ¼ 0, are consistent with such a deformation mechanism. This means that the average stress in the

fibers is below their flow stress, i.e. �rrð2Þ
e < rð2Þ

0 , whereas in the matrix, in order to deform, the average stress

should be the flow stress, i.e. �rrð1Þ
e ¼ rð1Þ

0 (see Fig. 4b). Vanishing strain fluctuations in the perpendicular

direction are also consistent with the fact that the shear bands are straight, though it is not clear yet what

are the implications of infinite strain fluctuations in the parallel direction (see Fig. 3a). It might be related to

the presence of not one but an infinite number of bands: one for every ‘‘parallel’’ straight path free of
inclusions. Anyway, they do not affect the final expression for the effective flow stress. Vanishing stress

fluctuations in the perpendicular direction (see Fig. 4a) means that the field is constant in this direction,

namely zero since the fields are aligned with the applied stress, and so the load is entirely carried by the

parallel component of the stress, which is also constant and equal to the flow stress.
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The shear band scheme in Fig. 5a becomes unrealistic for large concentrations, since it should be difficult

to find a straight path between fibers. In fact, when cð2Þ ¼ 1, the estimate for the effective property has a
discontinuity, and it jumps from 1 to 5 (see Fig. 2b). This may be related to the special microstructure

associated with Hashin–Shtrikman estimates. Indeed, Ponte Casta~nneda (2002b) found a nonvanishing

strengthening effect for nonzero values of the concentration, when the self-consistent estimate is used for

the linear comparison composite.
5.2. Fibers weaker than the matrix

Estimates of the Hashin–Shtrikman type for a fiber-weakened composite are shown in Fig. 6a as a

function of the strain-rate-sensitivity, for a given contrast (rð2Þ
0 =rð1Þ

0 ¼ 0:2) and concentration of fibers

(cð2Þ ¼ 25%). The new second-order estimates lie between the bounds for all values of m here as well. On the

other hand, the old estimate OSOE(U ) violates the variational upper bound for sufficiently small values of
m, and it tends to the Voigt upper bound in the rigid-perfectly plastic limit. Note also that the estimate

OSOE(A) violates the variational upper bound for all values of m < 1. Moreover, unlike the OSOE(W ) and

OSOE(U ) estimates, which diverge in the rigid-perfectly plastic limit, the SOE(W ), SOE(U ) and SOE(A)
estimates coincide: there is no duality gap in this highly nonlinear limit, for any contrast and concentration

of fibers. This was already noted in the case of voids by Ponte Casta~nneda (2002b). However, the SOE

estimates still exhibit a nonvanishing duality gap for small, nonzero values of m. Of the three possible types

of estimates, the stress-potential-type estimates SOE(U ) appear to give the best overall predictions in

general. (This is because the estimates SOE(W ) and SOE(A) exhibit unreasonable dependences on cð2Þ, near
cð2Þ ¼ 0, for small, but nonzero values of m.) Fig. 6b shows SOE(U ) estimates for the normalized effective

flow stress as a function of fiber concentration, for several values of the strain-rate-sensitivity (m ¼ 1,0.2,0).

The new estimate for the rigid-perfectly plastic limit is given by expression (42). Note that the old second-

order estimates OSOE(W ) and OSOE(U ) for m ¼ 0 (dashed lines) depend linearly on cð2Þ, and they are

considerably different. On the other hand, the new estimates SOE(U ) and SOE(W ) are equivalent for m ¼ 0,

and they exhibit a more complex, nonlinear dependence on cð2Þ.
The associated phase averages and fluctuations of the strain, normalized by the applied equivalent strain

�eee, are shown in Fig. 7a as a function of the strain-rate-sensitivity. The fields were assumed constant inside
the inclusions, so there are no fluctuations in phase 2. As in the previous case, the average strain in the



Fig. 7. Phase averages and fluctuations of the strain, normalized by the equivalent applied strain �eee, for a contrast of 5: (a) as a function
of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for two values of m. Labels 1 and 2

refer to the matrix and fibers, respectively.

7030 M. Idiart, P. Ponte Casta~nneda / International Journal of Solids and Structures 40 (2003) 7015–7033
stronger phase, now the matrix, goes to zero exponentially asm ! 0, �eeð1Þe � e�a=m, such that the average stress

in that phase, �rrð1Þ
e =rð1Þ

0 � �eeð1Þe

� �m � Oð1Þ in the rigid-perfectly plastic limit. The fluctuations in both directions

go up with decreasing m, but they saturate, reaching a maximum value for m ¼ 0. They are isotropic for the

linear case, becoming more anisotropic with increasing nonlinearity n ¼ 1=m, with the parallel strain fluc-

tuations always higher than the perpendicular ones. Fig. 7b shows the normalized phase averages and
fluctuations of the strain as a function of concentration, for two values of m (0, 0.1). When m ¼ 0:1 (con-

tinuous lines), the average strain in the matrix decreases monotonically with increasing concentration of

fibers, but in the fibers the average strain has a maximum for some small value of cð2Þ. The fluctuations in the

matrix vanish when cð2Þ ¼ 0 as they should, since the composite is actually a homogeneous material (the

matrix) in this case. Notice that the fluctuations reach a maximum value and then decrease with increasing

fiber concentration. It is interesting to note that they actually increase monotonically when normalized with

the phase average �eeð1Þe . But for m ¼ 0 (dashed lines), the fluctuations in the matrix are seen to decrease

monotonically with concentration of fibers, and blow up in the dilute limit, i.e. cð2Þ ! 0.
Fig. 8a shows the corresponding phase averages and fluctuations of the stress normalized by the flow

stress of the phases, as a function of the strain-rate-sensitivity. The equivalent applied stress has been set

equal to the effective flow stress for the rigid-perfectly plastic case, i.e. �rre ¼ ~rr0ðm ¼ 0Þ, where ~rr0 is given by

(42). As before, the stress fluctuations are isotropic for the linear case, and the anisotropy increases with

decreasing m, though this time they do not vanish for m ¼ 0. Note that they are higher in the perpendic-

ular direction for all values of m. The average stress in the matrix is always below the flow stress rð1Þ
0 ,

whereas the average stress in the fibers is always above the flow stress rð2Þ
0 , except for m ¼ 0 where

�rrð2Þ
e ¼ rð2Þ

0 . In Fig. 8b we can see the stresses as a function of the concentration, for two values of m (0, 0.1).
Again, we observe that the stress fluctuations vanish when cð2Þ ¼ 0, and they increase monotonically (in

both directions) with the concentration of fibers.

Some interesting observations can be made for the rigid-perfectly plastic limit (m ¼ 0). As in the case of

stronger fibers, there is no duality gap in this limit, for any contrast and concentration of fibers. Since now

it is the average strain in the matrix that goes to zero, the stress in this phase can take any value from zero to

the flow stress, rð1Þ
0 , and so we should expect a more complicated stress field than in the case of stronger

fibers. Moreover, since êeð1Þ 6¼ �eeð1Þ, the moduli tensor of the linearized matrix is not the tangent moduli, i.e.

L
ð1Þ
0 6¼ Lð1Þ

t , and that is why the new and the old second-order estimates do not coincide in this case.
Although the average strain in the matrix is zero, the matrix does deform––through the strain fluctuations!



Fig. 8. Phase averages and fluctuations of the stress, normalized by the flow stress rðrÞ
0 of the corresponding phase, for a contrast of 5:

(a) as a function of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for several values

of m. The equivalent applied stress �rre has been set equal to the value of ~rr0 at m ¼ 0. Labels 1 and 2 refer to the matrix and fibers,

respectively.
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Fig. 6b shows that there is a weakening effect due to weaker fibers. Note that the effective flow has an

infinite slope at zero fiber concentration. In fact, the dilute expansion of expression (42) can be shown to be:
~rr0

rð1Þ
0

¼ 1� 3

2
1

 
� rð2Þ

0

rð1Þ
0

!4=3

cð2Þ

2

� 	2=3

; ð46Þ
which has an infinite derivative at cð2Þ ¼ 0. As first suggested by Drucker (1966), when the inclusions are

weaker than the matrix the shear bands tend to go through the inclusions (see Fig. 5b). This deformation

mechanism for a periodic three-dimensional porous medium with a dilute concentration of spherical pores

leads to a prediction for the effective flow stress proportional to 1� aðcð2ÞÞð2=3Þ. On the other hand, for

periodic two-dimensional porous media with dilute concentrations of cylindrical pores, Drucker obtained a

similar expression, but with an exponent of 1/2, instead of 2/3. The second-order estimates generated in this

work predict an exponent of 2/3 for the case of randomly distributed cylindrical voids. This is different from
Drucker�s prediction, but it is not clear at this stage what the effect of randomness versus periodicity of the

microstructure is on this exponent. However, recent numerical simulations of porous media based on limit

analysis, suggest that the exponent should be between 1/2 and 2/3 (Pastor and Ponte Casta~nneda, 2002).
These simulations consist of finite element discretizations of a hollow cylinder, a commonly used model for

porous media, subject to two different types of boundary conditions. Results corresponding to uniform

stress lead to the lower exponent, whereas uniform strain results seem to be consistent with a 2/3 exponent.

In any event, the important thing to realize is that the exponent would be expected to be less than 1, because

of the strong interactions between inclusions, due to the shear bands, even at very low concentrations.
Furthermore, the stress and strain fields exhibit peculiar behaviors in this limit. Fig. 8b shows that as

cð2Þ ! 0, the average stress tends to the corresponding value of the flow stress in the given phase, not only in

the weaker but also in the stronger phase. Since the stress cannot be higher than the flow stress for m ¼ 0,

this implies that the stress fields become uniform in both phases. In fact, the stress fluctuations go to zero

like ðcð2ÞÞ2=3 and ðcð2ÞÞ1=3, in the parallel and perpendicular directions, respectively. On the other hand,

Fig. 7b shows that the strain fluctuations blow up as cð2Þ ! 0, which is unexpected. The question arises as to

whether the fluctuations really do go to infinity when the material is actually more and more homogeneous,

or if this is an artifact of the approximation. The answer to this interesting question, which will be pursued
in future work, is probably linked to the strong interactions among the fibers, even in the dilute limit.
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6. Concluding remarks

The new version of the second-order method of Ponte Casta~nneda (2002a) was used to estimate the ef-

fective behavior of power-law fibrous composites with arbitrary heterogeneity contrast subject to plane-
and anti-plane strain loading conditions. Estimates of the Hashin–Shtrikman type for the macroscopic

behavior, along with corresponding estimates for the strain and stress fluctuations, were presented and

discussed. The new estimates improve on prior estimates arising from an earlier version of the second-order

method (that did not incorporate the field fluctuations) in two ways. First, the new estimates, which are

exact to second order in the heterogeneity contrast, were found to satisfy rigorous bounds, namely the

variational upper bound and the Reuss lower bound. Second, although there is still a difference between the

strain and stress-based estimates––the so-called duality gap––it is smaller than for the earlier estimates, and

perhaps even more interestingly, is found to vanish in the rigid-perfectly plastic case, for any contrast and
concentration of fibers. On the other hand, the field fluctuations, which are known to be isotropic when the

material behavior is linear, were found to become progressively more anisotropic as the nonlinearity

increases.

Simple expressions for the strongly nonlinear rigid-perfectly plastic limit were derived and studied in

detail. The resulting predictions seem to be consistent with deformation mechanisms involving shear bands.

In the fiber-reinforced case, this translated into no reinforcement effect, and infinite strain fluctuations were

predicted in the matrix. In the case of weaker fibers, the dilute limit shows a dependence of the effective

property on the concentration of fibers of the type ~rr0=r
ð1Þ
0 � 1� aðcð2ÞÞ2=3, which is not in exact agreement

with Drucker�s results for periodic media, but it is closer and more realistic than previous estimates. This is

a sensitive limit where both phases are at yield, and the strain fluctuations in the matrix blow up. The

question remains open as to what are the implications of this result.

The effect of tension along the fibers will be considered in future work in an attempt to generate the yield

surface for general loading conditions. The use of self-consistent estimates for the linear comparison

composite would allow the incorporation of information about the fluctuations in both phases, and the

corresponding nonlinear estimates would be expected to be more accurate for high concentration of in-

clusions, at least for certain types of symmetric microstructures. This problem will also be addressed in
future work.
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