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Abstract

A recently introduced nonlinear homogenization method [J. Mech. Phys. Solids 50 ( 2002) 737-757] is used to es-
timate the effective behavior and the associated strain and stress fluctuations in two-phase, power-law composites with
aligned-fiber microstructures, subjected to anti-plane strain, or in-plane strain loading. Using the Hashin—Shtrikman
estimates for the relevant “linear comparison composite,” results are generated for two-phase systems, including fiber-
reinforced and fiber-weakened composites. These results, which are known to be exact to second-order in the heter-
ogeneity contrast, are found to satisfy all known bounds. Explicit analytical expressions are obtained for the special
case of rigid-ideally plastic composites, including results for arbitrary contrast and fiber concentration. The effective
properties, as well as the phase averages and fluctuations predicted for these strongly nonlinear composites appear to be
consistent with deformation mechanisms involving shear bands. More specifically, for the case where the fibers are
stronger than the matrix, the predictions appear to be consistent with the shear bands tending to avoid the fibers, while
the opposite would be true for the case where the fibers are weaker.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the application of the recently developed “‘second-order’” homogenization
method of Ponte Castaneda (2002a) to two-phase power-law composites with arbitrary heterogeneity
contrast. One of the interesting aspects of this new method is that, unlike the previous version (Ponte
Castaneda, 1996), it incorporates information about the fluctuations of the relevant fields, providing
nonlinear estimates that are exact to second order in the heterogeneity contrast and that do not violate
rigorous bounds.

For completeness and later reference, it is recalled here that bounds of the Hashin—Shtrikman type for
nonlinear composites were first given by Talbot and Willis (1985), using a generalization of the variational
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principles of Hashin and Shtrikman (1962) for nonlinear media. More general types of bounds, including
three-point bounds, were obtained by Ponte Castaneda (1991) by means of new variational principles
(Ponte Castaneda, 1992) involving ‘““linear comparison composites.”” Equivalent bounds for the special class
of power-law composites were generated by Suquet (1993) using linear comparison composites and Holder-
type inequalities. For more comprehensive reviews of the nonlinear homogenization literature, the reader is
referred to Ponte Castaneda and Suquet (1998) and Willis (2000). Field fluctuations in composites with
linear elastic properties have been studied by Kreher and Pompe (1985) and Bobeth and Diener (1987),
among others. Corresponding studies have apparently not yet been carried out for nonlinear composites in
the mechanical context, although a start along this direction was given in Ponte Castaneda (2002a,b). There
are also some recent results for weakly nonlinear composites (Pellegrini, 2000), as well as some theoretical
results for strongly nonlinear composites (Pellegrini, 2001; Ponte Castaneda, 2001) in the context of con-
ductivity.

2. Effective behavior

The assumption is made here that the material is composed of N different phases, which are randomly
distributed in a specimen occupying a volume €2, at a length scale that is much smaller than the size of the
specimen and scale of variation of the loading conditions. The constitutive behavior of the nonlinear phases
is characterized by convex strain potentials w") (r =1,...,N), such that the local stress—strain relation is
determined by:

W) N
s=" @, k) =D 0w) (n

r=1

where the characteristic functions y) are 1 if the position vector x is in phase » and 0 otherwise. The ef-
fective behavior of the composite is characterized by the effective strain potential. Using the minimum
potential energy principle it can be written as:
B N

W(g) = min (w(x,&)) = min > " (w(e))", (2)

€A () ee A (g) o
where angular brackets (-) and (-)" are used to denote volume averages over the composite () and over the
phase r (€'), respectively, ¢ are the volume fractions of the phases, and #'(2) denotes the set of kine-
matically admissible strain fields, given by:

. . 1 .
A (g) = {e | there is u with ¢ = 3 [Vu + (Vu)T} in Q, u=gx on0Q}, (3)

where u is the displacement field and g is a constant second-order tensor. Note that, in this case, u is such
that the average strain is simply (&) = &.

Alternatively, the behavior of the phases can be characterized by stress potentials, u”), which are dual to
the w), such that the local strain—stress relation is determined by:

e N
o) ulxe) =Y A (o). @

r=1

&=

According to the minimum complementary energy principle, the effective stress potential, U, can be
written as:
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N
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where ¥ (a) is the set of self-equilibrated stresses that are consistent with the average stress condition
(6) =@.

It can be shown (see, for example, Ponte Castaneda and Suquet, 1998) that the average stress in the
composite, @, is related to the average strain, g, through the relations:

6':66721(?.) and é:%—g(&), (6)
which provide the macroscopic constitutive relation for the composite. Thus, if we know the effective energy
functions, we can obtain the stress—strain relation for the nonlinear composite. Note that these functions
are very difficult to compute, in general, since they correspond to the solution of a set of nonlinear partial
differential equations with randomly oscillating coefficients. In the next section the new variational prin-
ciples are used to generate estimates for W and U.

3. Second-order homogenization estimates

In this section, an outline of the second-order homogenization method of Ponte Castaneda (2002a) is
given. The idea is to construct a linear comparison composite whose effective potential can be used to es-
timate the effective potential of the nonlinear composite. The homogenization is thus carried out for a linear
heterogeneous medium, for which many accurate estimates are already available (see, for example, Milton,
2002; Torquato, 2001). Let the comparison composite have a strain potential of the form:

wr(x,8) = > 7" (x)wy(s), ()

r=1

where the y) are the same characteristic functions as the nonlinear composite’s (i.e. both composites have
the same microstructure), and the phase potentials w({) are second-order Taylor-type expressions:

6W<)) r r 1 r r r
68@“y@-4»+§@—551$@—55. (8)
In these last expressions, ¢”) is a uniform reference strain, Lf)r> is a symmetric, constant fourth-order
tensor, and w") is the nonlinear potential of phase r. Differentiating this potential gives a stress-strain
relation:

Wi (@) = w7 (a) +

ow®)
Oe

where the stress polarization tensors t”) = dw® /dg(e")) — L{”&") are mathematically equivalent to thermal
stress tensors, since they are independent of the strain. Also note that L(()’> corresponds to the modulus
tensor of the linear phase. The effective potential associated with the linear comparison composite with
local potential given by (7) and (8) can be written as (Laws, 1973; Willis, 1981):

1 ~

Wr(8) = min (wr(x,8)) = f +%-84=&- Log, (10)
ee4 (2) 2

() + L (e — &) = < + L', )

g =

where £, 7 and L, are the relevant effective energy at zero applied strain, the effective polarization, and
effective modulus tensor, respectively.
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The idea of the second-order procedure is to choose, within certain simplifying assumptions, the ref-
erence strains and modulus tensors of the above-defined linear comparison composite, in such a way as to
generate the best possible estimates for the nonlinear potential W through known estimates for the linear
potential Wr. This optimization procedure, which involves some approximations, is not repeated here for
brevity (see Ponte Castafieda (2002a) for details). In any event, the optimal values of the variables &) and
Lg) are given by:

&) = g0, (11a)
and

W ow Do o

~ 8y — s (s()):Lé)(sUfs()), (11b)

where the ") are constant second-order tensors, arising from the introduction of suitable error measures
(Ponte Castaneda, 2002a), that depend on the second moments of the fluctuations of the strain through
appropriate traces of the relations:

(g(r> _ E(f)) ® (é(”) _ g(r)) = ((e — g(r)) ® (e — §<’>)>(’)iC£’), (12)

where C!") serves to denote the covariance tensor of the strain field in phase r of the linear comparison
composite. It should be emphasized that, in general, the equality cannot be enforced for all components of
the tensorial relation (12), and that is why only certain traces of this relation are used.

Thus, the reference strains &) are identified with the phase averages of the strain, and the modulus
tensors Lg') follow from the so-called “generalized secant condition” (11b). Fig. 1 shows a one-dimensional
graphical representation of this condition. Note that, if the strain field in a phase is quite homogeneous, i.e.
the fluctuations are small, the modulus tensor of the corresponding linearized phase in the comparison
composite will be close to the tangent modulus tensor. But if the field has a heterogeneous distribution, the
new method will result in a less stiff modulus tensor.

The average strains and the covariance tensors of the actual strain field may be computed “self-
consistently” from the linear comparison composite using the following identities (Ponte Castaneda and
Suquet, 1998):

ot
() el
Lran \ ’/&/
7
N3] .. ®
ze' = Lg
6(’,) N : /// :
=7 7 3 C)
- H : ()
3 ,’/ ‘Lsec
o : :
-,‘ g( ’.) -f._:"fé (r) £

N ¥4

Fig. 1. One-dimensional sketch of the nonlinear stress—strain relation and different types of linearizations: Lg’), L") and LE;'Z, refer to the
new ‘“‘generalized secant”, secant, and tangent modulus, respectively.
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In the first relation,
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and the L(({) are held fixed, while in the second, the " are held fixed.
Finally, the effective potential of the nonlinear composite (2) may be re-expressed in terms of only the
variables &) and &) via the relation (Ponte Castafieda, 2002a):

ol owt)
_ Zc(r) |:W(r)(é(r)) - &) - (8 — ). (14)
r=1

Knowing the effective potential Wy of the linear comparison composite as a function of the phase moduli
Lg , and the polarizations 7, the variables &) and &”) can then be computed using (13), and an estimate
for the nonlinear potential may be obtained via (14). Several methods are available to estimate and bound
the effective potential of a linear composite, such as the Hashin—Shtrikman and self-consistent methods. If
the method used is exact to second order in the heterogeneity contrast, it can be shown that the estimate
(14) is also exact to second order, and therefore in agreement with the small-contrast expansion of Suquet
and Ponte Castaneda (1993).

Next, consider the case of isotropic, incompressible phases with w”)(g) = ¢ (.), where & is assumed to
be traceless, and ¢, is the von Mises equivalent strain, defined in terms of the strain deviatoric tensor &4 by

= +/(2/3)&q - &4. For this broad class of potentials, Ponte Castaneda (2002b) proposed, as an approxi-
mation (1ncompress1ble) tensors L with principal axes aligned with the average strain, such that:

= 20EY 4 2,40 F0). (15)

Here, E"” and F" are fourth-order projection tensors (Ponte Castafieda, 1996) defined by E" =
2/3)8) @&, EV +F" =K, with & =2"/&", such that EVE” =E", FYF" =F", EVF" =
FE") = 0. Also, K is the standard fourth-order isotropic shear projection tensor. Note that although the
nonlinear phases are isotropic, the phases of the linear comparison composite are anisotropic. With this

choice of L0 , it follows from (11b) that the traceless tensors ") have components “parallel” and ““per-
pendicular” to the average fields, which, from (12), are given by:

) =g 4\ 2EV . ), =/ZF".c (16)

. a(y . WAy 1/2 . A A(r e .
where a”> = @e(’) -E" (*)) ?and &7 = (2a0 - Fg0 >) " so that (80)* = (.s‘(| N2+ (81))%. The “generalized
secant” conditions (11b) reduce to.

éﬁ’)

3508 = 50) = ¢ &) g5~ 4" (@), 3 = (17)

Finally, expression (14) for 174 simplifies to:

— VZN;cm [(b(r)(ég)) — W (géa) (éhw _ 5@)] (18)

Proceeding in a completely analogous fashion, estimates for U can be obtained using the stress
potentials #) and their corresponding second-order Taylor-type expressions u({):
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T7(= S r r)(alr au(r)—r ~(r —(r
U(g):zc()[u()(o-<))_ - &) (69 — )], (19)

r=1

where the uniform reference stresses 6”) have been identified with the average stresses in each phase &,
and 6 are constant tensors that depend on the stress fluctuations through appropriate traces of the
relations:

((,(r) — ;,(r)) ® (&(r> — ;,(r>> = (6 — ;,(r)) ® (6 — 6-<’))>(")ﬁCf,"), (20)

where Cf,’) is the covariance tensor of the stress field in phase ». The phases of the linear thermoelastic
comparison composite have strain polarizations ) = ou”) /06 (") — M{’&", and compliances M{’ given
by the secant-type condition:

ou) ) ou”) _()

)Y\ __ (") (A (r) —(r)
¢ — ") =M, (6" —a"). 21
- (@) =My ) @)
Again, consider the case of isotropic, incompressible phases with u")(a) = 1//(’)(05), where o, is the von
Mises equivalent stress, defined in terms of the stress deviatoric tensor 64 by o. = 1/(2/3)64 - 64. As in the

strain formulation, for this class of potentials, we restrict attention to (incompressible) compliance tensors
whose principal axes are aligned with the average stress:

P 1
Y (R CIVLE ) (22)
Z/l(r) 2 (r)
0 o
where EV = (3/2)6 @ 6, E”) + F") = K, with 6} = 6 /g("), are the appropriate projection tensors in

this case. From (20) and (21) it follows that:

6 =6V + Y. CY, 6 =3 .Y, (23)

where 6'|("') = (36" -Emé‘(’))l/2 and 6V = (o™ -F(’)&(’))l/z, are the “parallel” and “perpendicular” com-

ponents of the traceless tensors 6", respectively. The “generalized secant conditions” (21) reduce to:
~(r) (r)l ~
1 /.0 9t Ol N 1 Yy (60)
(6" =) =960 5 =9 ("), =¥ e (24)
[

320 3 6

Finally, expression (19) can be written as:

N
U(a) =Y e [u(@) —y () (o = o)) (25)
r=1
Relations (14) and (19) provide two different ways to estimate the effective behavior of the nonlinear
composites. However, it is important to emphasize that, because of the approximations introduced in the
optimization procedure, these estimates are not exactly equivalent (see Ponte Castaneda, 2002a), and a
small duality gap is expected, in general.
A third way to approximate the constitutive behavior of the nonlinear composite is to use, directly, the
constitutive relations of the associated linear comparison composite, as given by (Laws, 1973):

6=1+Le =1+ M. (26)
Making use of well-known expressions for the modulus and compliance tensors Ly and M, and the
stress and strain polarizations 7 and #, together with the expressions for the phase polarizations ) and 5

in terms of the phase averages ") and &), and modulus tensors L(()r) and M(()r), these expressions may be
re-written more explicitly as (Ponte Castaneda, 2002a):
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These two stress—strain relations for the nonlinear composite are exactly equivalent to each other, be-
cause there is no duality gap for the linear comparison composite. However, again for reasons related to the
approximations mentioned above, they can be shown to be different from the corresponding relations for
the nonlinear composite generated by direct derivation (6) of the second-order estimates (14) and (19). They
can be thought of as improved versions of the “affine” estimates of Masson et al. (2000), in the same sense
as the second-order estimates of Ponte Castaneda (2002a) are improved versions of the earlier second-order
estimates of Ponte Castaneda (1996). Unfortunately, these new “affine” estimates are not exact to second-
order in the contrast, and are expected to be less accurate than the corresponding estimates (14) and (19).

Finally, since the linear phase potentials w({) and u({) are dual to each other, it is worth noting that the
following duality relations hold between the strain/moduli variables in (14) and stress/compliance variables
in (19):

owl) ou)
() — =(r) a2 — =(r)
e = 3 g = c
Og &), oo ’
owl) ou)
S _ 20) A _ 5(r) (28)
¢ = Fi g = G
as ( )? ao_ ( )7
-1
My = (L)

provided g and & are taken to be related by expressions (26), or equivalently, by expressions (27).

4. Two-phase, power-law fibrous composites under anti-plane or in-plane loading

In this section we consider fibrous composites with incompressible power-law phases subject to anti-
plane or in-plane loading. The phase strain and stress potentials are given by:

Wi = 00 () (292)
1 +m &o ’
(r> 1+n

u(g) = r <ﬁ> : (29b)

respectively. In these expressions, m is the strain-hardening parameter, such that 0 <m <1, n = 1/m is the
corresponding nonlinearity exponent, 0((;) is the flow stress of phase r, ¢ is a reference strain, and the ¢, and
g, are the von Mises equivalent strain and stress, already introduced in the previous section. The stress—
strain relation for such a material is given by:

6w( ) I—|—2 oo (e \" (30)
c6=— (&8 =— s— | = 3

Oe Ll g \ & b

where p = —tr(e)/3 is the indeterminate, hydrostatic stress associated with the incompressibility condition

tr(¢) = 0. Note that m = 1 and m = 0 represent linear and rigid-perfectly plastic behavior, respectively. This
model is commonly used to characterize time-independent plastic deformation of metals, as well as their
time-dependent viscous deformation (e.g. high temperature creep). In the first case, the deformations are
infinitesimal and ¢ and & represent the infinitesimal stress and strain tensors, respectively. In the second
case, the deformations are finite and ¢ and ¢ are identified with the Cauchy stress and Eulerian strain-rate,



7022 M. Idiart, P. Ponte Castaneda | International Journal of Solids and Structures 40 (2003) 7015-7033

respectively. Then, m becomes a strain-rate sensitivity parameter. Although we will continue to use only
infinitesimal stresses and strains below, reference will also be made to the rate-sensitive case, without
further clarification.

The infinitely long fibers are assumed to be aligned and perfectly bonded to the matrix, and to have
circular cross section with diameter much smaller than the dimensions of the specimen. The distribution of
the fibers in the transverse plane is assumed random and isotropic, so the composite is transversely isotropic.
Furthermore, from the homogeneity of the potentials (29a) and (29b) in their corresponding fields, it
follows that a transversely isotropic composite, made up of power-law phases with the same exponent m
and the same reference strain &, subject to anti-plane or in-plane loading, has effective potentials of the
form (29a) and (29b). They can be written as:

B B 1+m

Tri=y . 6000 [ &

W) =1, (80> , (31a)
~ _ 1+n

2N €000 E

vie) =1, <&0> : (31b)

where & and ¢, are the equivalent average strain and stress, respectively. For anti-plane loading along the
3-direction they reduce to & = (2/v/3)\/&; + &, and 6. = (v/3)\/d%; + 633, and for in-plane loading they

reduce to & = (2/v/3) \/5%2 + 18 — &n)’ and 3. = (V3) \/6%2 +1(811 — 62)". The effective flow stress 6y is
a function of the nonlinearity, the contrast, and concentration of fibers, and it completely characterizes the
effective behavior.

Before proceeding to the computation of the effective potentials (31a) and (31b) for the fibrous com-
posites, we note that the effective energy (10) of the N-phase thermoelastic comparison composite simplifies
greatly when the composite has only two-phases. In this case, the Levin relations (Levin, 1967) can be used
to obtain the effective thermal stress tensor in terms of the effective elastic tensor. The effective energy then
takes the form:

() =7 +7 &+ Log + g[g n (ALO)*I(AT)] (Lo — Lo) [z + (ALy)"! (Ar)] , (32)

where the overbar denotes volume averages, ALy = L") — L\” and At =) — ¢ Note that the only
nonexplicit term in this expression is the tensor of effective moduli Ly for a two-phase, linear-elastic
composite. Estimates of the Hashin and Shtrikman (1963) type for such linear composites with particulate-
type microstructures (i.c., inclusions of phase 2 dispersed in a matrix of phase 1) have been given by Willis
(1977, 1978) and Ponte Castaneda and Willis (1995). The relevant expression for the effective modulus
tensor is:

—1
. 2 -1 2 —1
Lo— Z c(,.>L(()r) {I n P(O)(L(()r) B L(O))} { Zc(s) [I + PO (L((f) _ L(O))} } 7 (33)
r=1 s=1

where the modulus tensor L” of the homogeneous reference medium in the Hashin—Shtrikman approxi-
mation must be identified with the modulus tensor of the matrix phase (L(()l), in this case), and P is a
microstructural tensor, related to the Eshelby tensor, which depends on L%, the shape and orientation of
the particles, as well as on the shape and orientation of the two-point correlation functions for their dis-
tribution in space. These estimates are known to be exact to first order in the volume fraction of the
particles and to second order in the heterogeneity contrast. They tend to underestimate the interaction
between particles, but can give fairly accurate estimates for small to intermediate concentrations.
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Since the nonlinear phases are isotropic, and are isotropically distributed in the transverse plane, under
the assumptions of anti-plane or in-plane strain loading, it is reasonable to assume that the average strain
field in the phases is aligned with the average strain, i.e. ég’) =& =¢g/&, for all r, such that the phase pro-
jection tensors become identical for both phases, and are given by E = (2/3)¢ ® ¢ and F = K — E. Then,
using the fact that L has the form (15), and making use of the long-fiber limit in the appropriate ex-
pressions for the tensor P\”, it can be shown (see Ponte Castaneda, 1996) that under in-plane and anti-plane
loading, the in-plane and anti-plane components of the tensor P\, respectively, may be written in the form:

PO — vk ' o 1
201+ VE)A9 7 2(1 + VE)u©®

where k = 2© /1'% is the anisotropy ratio of the homogeneous reference medium, and the projection tensors
have to be suitably interpreted.

With expressions (32)—(34) defining explicitly the effective energy of the relevant linear comparison
composite, we have everything required to compute the effective energies of the power-law fibrous com-
posites. Thus, introducing (29a) and (31a) into (18), we arrive at the following expression for the nor-
malized effective flow stress:

5 é(]) I+m é(l) m §(1> E(l) 0(2) 2 I+m
Rl | P i I (e R iy (35)
o, Ee Ee Ee Ee (2 €

where it is recalled that the labels 1 and 2 have been used to identify the matrix and fiber phases, re-
spectively. Note that &* can be eliminated 1n favor of &) using the average strain condition, i.e.
g = (g, — cWell) /@), and that the variables sl ) and &7 n do not appear in (35) because there are no
fluctuations in phase 2. This last result is associated with the Hashin—Shtrikman approximation and can be
verified by noting that the tensor P’ is independent of L(()z) in this case. Expression (35) allows the com-
putation of 6, as a function of the rate sensitivity m, the fiber concentration ¢, and the contrast ¢}’ /a!,
in terms of the variables & ‘ " and &, which, in turn, must be determined from a set of three algebraic
nonlinear equations in these unknowns arising from expressions (13), together with (32)—(34), as well as
relations (17) and (16).

The stress potential (29b) can be used as the starting point to generate alternative estimates for ,. In this
case, the effective stress potential of the linear comparison composite is given in terms of the compliances
and strain polarizations by an expression analogous to (32). In turn, the effective compliance tensor M is
given in terms of the compliances by an express10n analogous to (33) where the relevant microstructural
tensor is related to the P-tensor (34) by Q¥ = (M)~ : - (M9 'po )(M(O)) ' From (25), the normalized
effective flow stress may be expressed in terms of the stress variables via:

(34)

oo 2L

1/n

my 0\ (6 &0 AN

1 G 0 o g 0 o

=l = LRl e I I R T I . (36)
g O O Oe Oc 0y O

where the variables 6! H ), and ' L may be obtained from express10ns completely analogous to the above-

mentioned express1ons in the context of the variables &), ” ) and & L ). However, they may also be computed

with the help of the duality relations (28).
Finally, a third expression for &, is obtained by making use of the affine version of the estimates,
as specified by relations (27). For example, the first of them gives the expression:

~ _ m (2) m
o _ ) Q + 2 2) %0 _ ﬁ . (37)
o 2 o \ &

™|



7024 M. Idiart, P. Ponte Castaneda | International Journal of Solids and Structures 40 (2003) 7015-7033

Expressions (35)—(37) generalize corresponding expressions for the extreme cases of rigid particles and
voids (infinite contrast) given by Ponte Castaneda (2002b). This author also gave estimates of the self-
consistent type for these special case, where the fluctuations are nonzero in both phases in general. As a
consequence of the duality gap, these three expressions are expected to give slightly different predictions for
6, for any m different from 1 (the linear limit). However, as verified in the next section, these expressions all
agree in the ideally plastic (rate-insensitive) limit.

It is emphasized that because of the above-stated reasons relating to expression (34), all the results
presented below, with the appropriate interpretations, are valid for both anti-plane and in-plane loading of
the two-phase fibrous composites, even if the stress and strain fields would obviously differ in detail due
to the geometric differences between anti-plane and in-plane loading conditions.

4.1. Hashin—Shtrikman estimates for rigid-perfectly plastic phases

The above expressions simplify considerably for the special case of rigid-perfectly plastic behavior, which
corresponds to setting m = 0 in potentials (29a) and (29b). However when taking the limit m — 0, we must
consider two cases separately.

If the fibers are stronger than the matrix (af)z) / aél) > 1) the solution can be shown to reduce to that for
rigid particles, regardless of the contrast In this case, the average strain in the particles is zero, and in the
matrix we have &) = g /cV, &V — oo, and & r) = 0. The average stress 1n the matrix is the flow stress,
ie ol = a(() and the stress ﬂuctuatlons are such that O'H) = 601 and 6\ = 0, respectively. All three of
the above expressions for the effective flow stress, (35)—(37), reduce to the result:

Go/ay) = 1. (38)

That is, there is no reinforcement effect by the harder fibers in this case.

If the fibers are weaker than the matrix (a(()z) / af)l) < 1), it is important to realize that when m — 0, the
average strain in the matrix goes to zero exponentially gll) ~ etk >/ " in such a way that the average stress
in this phase, which is proportional to (&))", is finite and below oy, Thus, in the matrix &" = 0, so that

Y =g /c?, and from relations (16):

A1) (1
N N DRSS Sty (39)
g /200 kU4’ & ¢

where the anisotropy ratio k is determined as a function of the contrast and concentration from:

34 @ (1 o VI +k>

1—k V2

A0 Tk

(40)

which follows from the generalized secant condition (17) in phase 1.
The corresponding phase average and fluctuations of the stress can be deduced from (28). They are given
in terms of the anisotropy ratio by:

o) _ -k 8 o _ _Vk (41)
o) VI+k 6V VI+k &) VI+k
Finally, expressions (35)—(37) for the normalized effective flow stress all simplify to:
5 @ 1—k
ﬂ: ©) G_+(1_c(2)) (42)

g, 00 1+k



M. Idiart, P. Ponte Castaneda | International Journal of Solids and Structures 40 (2003) 7015-7033 7025

When 082) / af)n — 0, these expressions reduce to the results of Ponte Castaneda (2002b) for the special case
of aligned cylindrical voids distributed isotropically in a rigid-perfectly plastic matrix with zero hydrostatic
strain.

4.2. Small contrast expansions

As already mentioned, estimates (35) and (36) are exact to second order in the heterogeneity contrast,
that is, they both agree with the exact second-order asymptotic expansion of Ponte Castaneda and Suquet
(1995), which for this case can be written as:

L lem (o) — (o)’
2 mtm (o)

The first term in this expansion corresponds to the Voigt upper bound. Note that the range of validity of
(43) vanishes as m — 0. In fact, the estimate for the rigid-perfectly plastic limit (m = 0) has an expansion of
a different form, which actually depends on whether the fibers are stronger or weaker than the matrix. Thus,

(43)

5’0 = <O'0> —

for 0(02) / oé” = 1 the result is independent of the contrast, i.e. 6o = aél), while for 062) / 0(()1> < 11itis given by:
2/3
- 3 13 (62) — (a0)°
= —Z(1=c® AU LA 44
6o = (00) 3 (1—c) o) : (44)

which is the small-contrast expansion of expression (42).
On the other hand, the affine estimate (37), which is known not to be exact to second order in the
contrast, has an expansion of the form:
. 1 (at) — (o0)’
6o = (0p) — = ——7——, 45
(o0} —3 (45)
which does not agree with (43) for any m, except, of course, for m = 1. Moreover, it is independent of the
nonlinearity, which first appears in the next order term. However, the range of validity of this expansion
also tends to zero in the limit as m tends to zero, where it agrees with the expressions given above for the
corresponding energy estimates. Interestingly, this expression coincides with the second-order expansion
of the variational estimate of Ponte Castaneda (1991), which is a rigorous upper bound for 4.

5. Results and discussion

Here, results from Section 4 for anti-plane and in-plane loading are presented as a function of the strain-
rate-sensitivity m and fiber concentration c¢?, for two values of the heterogeneity contrast—one
corresponding to stronger fibers (o(()z) / aé') = 5) and the other to weaker fibers (a(()2 / agl) = 0.2). The new
“second-order” estimates for the effective flow stress are compared with rigorous bounds and other lin-
earization schemes. For brevity, they will be denoted by the labels SOE(W), SOE(U) and SOE(A4), corre-
sponding respectively to the strain-potential formulation (35), the stress-potential formulation (36), and the
constitutive-relation (affine) formulation (37). The corresponding “old” second-order estimates of Ponte
Castaneda (1996) will be denoted by OSOE(#), OSOE(U) and OSOE(A). Recall that these estimates make
use of a similar linear comparison composite except that it uses the tangent moduli of the phases evaluated
at the phase averages. The ““variational” Hashin—Shtrikman estimates of Ponte Castaneda (1991) provide
rigorous upper bounds for all other nonlinear Hashin—Shtrikman estimates, and, in particular, for the
second-order estimates. These bounds make use of the secant moduli of the phases evaluated at the second
moments of the fields (Suquet, 1995). The Voigt and Reuss estimates are also included for comparison
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purposes. These are rigorous, microstructure-independent upper and lower bounds, obtained from uniform
strain and stress trial fields, respectively.

5.1. Fibers stronger than the matrix

Fig. 2a shows various estimates of the Hashin—Shtrikman type for the effective flow stress of a fiber-
reinforced composite, normalized by the flow stress of the matrix, 6,/ a(()l), as a function of the strain-rate-
sensitivity m, for a given contrast (cr(()2> / af)l) = 5) and concentration of fibers (¢!® = 25%). It is observed that
all the new estimates (SOE) lie between the variational upper and Reuss lower bounds for all values of m. It
is also observed that the old second-order estimates (OSOE) lie higher than the corresponding new esti-
mates (SOE), and, in fact, it can be verified that the OSOE(A) violates the variational upper bound for some
values of m close to 1.

Furthermore, while the W- and U-type estimates are different for both the new and the old second-order
estimates, it can be seen that the associated duality gap is quite small in general. Moreover, this gap
vanishes in the linear case, m = 1, where both estimates go to the classical Hashin—Shtrikman estimate, and
in the extremely nonlinear rigid-perfectly plastic case, m = 0, where both versions go to the Reuss lower
bound. Note that as the nonlinearity » = 1/m increases, the reinforcement effect becomes smaller and fi-
nally vanishes in the rigid-perfectly plastic limit. Fig. 2b shows the SOE(U) estimates for the normalized
effective flow stress as a function of fiber concentration c¢® for several values of the strain-rate-sensitivity
(m=0,0.1,0.2, 1). (The SOE(W) and SOE(4) estimates are not included in this figure as they are very close
to the corresponding SOE(U) estimates.) The main observation here is that the dependence of the effective
flow stress on the fiber concentration ¢ becomes progressively weaker with decreasing values of m.
However, for very high concentrations, i.e. ¢ — 1, the estimates become very steep as m decreases, and
in the limiting case m = 0 the estimate presents a jump from 0 to 5.

The dependence on m of the phase averages and fluctuations of the strains associated with the new es-
timates are shown in Fig. 3a, normalized by the equivalent applied strain &,. The average strain in the fibers
(the stronger phase) can be shown to decay exponentially as m — 0, &2 ~ e~*™, so that in the ideally plastic

limit the average stress in this phase, 3% /o ~ (§2)" ~ O(1), remains below the flow stress g} . Recall that

the fields were assumed constant inside the fibers, hence there are no fluctuations in phase 2, so that the
modulus tensor in the linearized phase is the tangent moduli. The fluctuations in the matrix are seen to

1.4 T T T 5 T T T T
Variational
135 upper bound 7 ] 45| SOEU)
77 c?®
13} OSOE, 7 K 9 4f 0-=5
: W) 77 S0E@M) 0
125 [ SOEW) /47~ SOEW) 35
Gy ot </ T~ 0SOE(W, 1 0,
ol [/~ OSOE( ol
115 A ] 25
Ky @
L1F /4 Oy _ 5 1 2F
g o®
1.05 |4/ Reuss 0 1 151
y lower bound ¢ = 259
1 1 ! L L 1 1 1 L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) m (b) c?

Fig. 2. Effective flow stress normalized by the flow stress of the matrix for a contrast of 5: (a) as a function of the strain-rate-sensitivity
for a concentration of 25%; (b) as a function of the fiber concentration for several values of m. Labels 1 and 2 refer to the matrix and
fibers, respectively.
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Fig. 3. Phase averages and fluctuations of the strain, normalized by the equivalent applied strain &, for a contrast of 5: (a) as a function
of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for m = 0.1. Labels 1 and 2 refer to
the matrix and fibers, respectively.

increase with the nonlinearity, meaning the strain field becomes more heterogeneous. Moreover, they ac-
tually blow up in the ideally plastic limit (m = 0), which is an unexpected result. Note also that these fluc-
tuations are isotropic in the linear case, but become anisotropic as the nonlinearity increases, and they are
always higher in the parallel direction. When m = 0, the stress—strain curve is “flat”, the variables &) and &)
become aligned, and since neither of them vanishes, the modulus tensor in the linearized matrix tends to the
tangent moduli (which has zero parallel component). This is why the new and the old versions of the estimate
coincide in this case. The phase averages and fluctuations of the strain for m = 0.1 are shown in Fig. 3bas a
function of the fiber concentration. For this and smaller values of m, the average strain inside the fibers is
almost negligible, except as c®) — 1, when &2 /g, — 1. Since the fibers practically do not deform, the average
strain in the matrix is approximately &V /. ~ 1/c!), which goes to infinity as ¢ — 1. As expected, there are
no fluctuations for ¢ = 0, since the composite is actually a homogeneous material (the matrix) and hence
the fields are constant. As the concentration of fibers increases, the strain field becomes more heterogencous
and thus the fluctuations are higher, and they are seen to blow up when ¢ — 1. But when normalized
with the phase average g, it can be shown that éh” /&) — const. and £ /&) — const. in this limit.

Fig. 4a shows the corresponding phase averages and fluctuations of the stress normalized by the flow
stresses of the phases, as functions of m. The equivalent applied stress has been set equal to the flow stress of
the matrix, i.e. 6, = a(()l) . Since the stress—strain curve “flattens’ as m decreases, and the strain in the matrix
does not vanish (see Fig. 3a), the stress fluctuations become smaller, meaning the stress field becomes more
homogeneous. Note that, unlike the strain field, the stress field has higher fluctuations in the perpendicular
direction. Again, the stress fluctuations are isotropic in the linear case and anisotropic for general values of
m, but they vanish when m = 0, i.e. the stress field becomes constant. The variables ") and ") are the same
in this limit, and so the compliance tensor of the linearized matrix becomes the tangent compliance. As
already mentioned, the average stress in the fibers (the stronger phase) remains below the flow stress aé” for
all values of m. The phase averages and fluctuations of the stress for m = 0.1 (continuous lines) can be seen
in Fig. 4b, as a function of the fiber concentration. When ¢ = 0 the stress fluctuations in the matrix
vanish, and are seen to increase with concentration in both directions. Note that for m = 0 the average
stresses remain below the corresponding flow stresses, except when ¢'? = 0, where the average stress in the
matrix (weaker phase) reaches the flow stress.

At this point, some comments about the rigid-perfectly plastic limit (m = 0) are appropriate. For defi-
niteness, the comments will be made in the specific context of anti-plane strain loading, which is easier to
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Fig. 4. Phase averages and fluctuations of the stress, normalized by the flow stress af)') of the corresponding phase, for a contrast of 5:
(a) as a function of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for two values of
m. The equivalent applied stress . has been set equal to of)l). Labels 1 and 2 refer to the matrix and fibers, respectively.
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Fig. 5. Rigid-perfectly plastic composite subject to antiplane shear in the vertical direction: (a) when the fibers are stronger than the
matrix the shear bands go through the matrix; (b) when the fibers are weaker than the matrix the shear bands go through the fibers.
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visualize than the corresponding plane-strain case. First, there is no duality gap in this limit. Both, SOE(W)
and SOE(U) estimates give no reinforcement effect due to the presence of stronger fibers (see Fig. 2), except
when ¢® — 1. The solution actually reduces to that of rigid particles, regardless of the heterogeneity
contrast. It is known from the work of Drucker (1966) that in this case the exact solution corresponds to
straight shear bands passing through the matrix, the weaker phase, at least at low concentrations of fibers
(see Fig. 5a). The deformation is localized in these bands, which correspond to discontinuities in the dis-
placement field. Note that the results of Fig. 3a, which shows that the average strain in the fibers is zero
when m = 0, are consistent with such a deformation mechanism. This means that the average stress in the
fibers is below their flow stress, i.e. 6&2) < 082) , Whereas in the matrix, in order to deform, the average stress
should be the flow stress, i.e. a{V) = aé” (see Fig. 4b). Vanishing strain fluctuations in the perpendicular
direction are also consistent with the fact that the shear bands are straight, though it is not clear yet what
are the implications of infinite strain fluctuations in the parallel direction (see Fig. 3a). It might be related to
the presence of not one but an infinite number of bands: one for every “parallel” straight path free of
inclusions. Anyway, they do not affect the final expression for the effective flow stress. Vanishing stress
fluctuations in the perpendicular direction (see Fig. 4a) means that the field is constant in this direction,
namely zero since the fields are aligned with the applied stress, and so the load is entirely carried by the
parallel component of the stress, which is also constant and equal to the flow stress.
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Fig. 6. Effective flow stress normalized by the flow stress of the matrix for a contrast of 0.2: (a) as a function of the strain-rate-sen-
sitivity for a concentration of 25%; (b) as a function of the fiber concentration for three values of m. Labels 1 and 2 refer to the matrix
and fibers, respectively.

The shear band scheme in Fig. 5a becomes unrealistic for large concentrations, since it should be difficult
to find a straight path between fibers. In fact, when ¢® = 1, the estimate for the effective property has a
discontinuity, and it jumps from 1 to 5 (see Fig. 2b). This may be related to the special microstructure
associated with Hashin—-Shtrikman estimates. Indeed, Ponte Castaneda (2002b) found a nonvanishing
strengthening effect for nonzero values of the concentration, when the self-consistent estimate is used for
the linear comparison composite.

5.2. Fibers weaker than the matrix

Estimates of the Hashin—Shtrikman type for a fiber-weakened composite are shown in Fig. 6a as a
function of the strain-rate-sensitivity, for a given contrast (a(()2> /af)l) =0.2) and concentration of fibers
(c® = 25%). The new second-order estimates lic between the bounds for all values of m here as well. On the
other hand, the old estimate OSOE(U) violates the variational upper bound for sufficiently small values of
m, and it tends to the Voigt upper bound in the rigid-perfectly plastic limit. Note also that the estimate
OSOE(4) violates the variational upper bound for all values of m < 1. Moreover, unlike the OSOE(W) and
OSOE(U) estimates, which diverge in the rigid-perfectly plastic limit, the SOE(W), SOE(U) and SOE(A4)
estimates coincide: there is no duality gap in this highly nonlinear limit, for any contrast and concentration
of fibers. This was already noted in the case of voids by Ponte Castaneda (2002b). However, the SOE
estimates still exhibit a nonvanishing duality gap for small, nonzero values of m. Of the three possible types
of estimates, the stress-potential-type estimates SOE(U) appear to give the best overall predictions in
general. (This is because the estimates SOE(W#) and SOE(4) exhibit unreasonable dependences on ¢®, near
¢® =0, for small, but nonzero values of m.) Fig. 6b shows SOE(U) estimates for the normalized effective
flow stress as a function of fiber concentration, for several values of the strain-rate-sensitivity (m = 1,0.2,0).
The new estimate for the rigid-perfectly plastic limit is given by expression (42). Note that the old second-
order estimates OSOE() and OSOE(U) for m = 0 (dashed lines) depend linearly on ¢, and they are
considerably different. On the other hand, the new estimates SOE(U) and SOE(W) are equivalent for m = 0,
and they exhibit a more complex, nonlinear dependence on ¢,

The associated phase averages and fluctuations of the strain, normalized by the applied equivalent strain
&, are shown in Fig. 7a as a function of the strain-rate-sensitivity. The fields were assumed constant inside
the inclusions, so there are no fluctuations in phase 2. As in the previous case, the average strain in the
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Fig. 7. Phase averages and fluctuations of the strain, normalized by the equivalent applied strain &, for a contrast of 5: (a) as a function
of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for two values of m. Labels 1 and 2
refer to the matrix and fibers, respectively.

stronger phase, now the matrix, goes to zero exponentially as m — 0, 8! ~ e=*/™, such that the average stress
in that phase, 6! / oy (ée ) ~ O(1) in the rigid-perfectly plastic hrmt. The fluctuations in both directions
go up with decreasmg m, but they saturate, reaching a maximum value for m = 0. They are isotropic for the
linear case, becoming more anisotropic with increasing nonlinearity » = 1/m, with the parallel strain fluc-
tuations always higher than the perpendicular ones. Fig. 7b shows the normalized phase averages and
fluctuations of the strain as a function of concentration, for two values of m (0, 0.1). When m = 0.1 (con-
tinuous lines), the average strain in the matrix decreases monotonically with increasing concentration of
fibers, but in the fibers the average strain has a maximum for some small value of ¢?. The fluctuations in the
matrix vanish when ¢® = 0 as they should, since the composite is actually a homogeneous material (the
matrix) in this case. Notice that the fluctuations reach a maximum value and then decrease with increasing
fiber concentration. It is interesting to note that they actually increase monotonically when normalized with
the phase average &"). But for m = 0 (dashed lines), the fluctuations in the matrix are seen to decrease
monotonically with concentratron of fibers, and blow up in the dilute limit, i.e. ¢ — 0.

Fig. 8a shows the corresponding phase averages and fluctuations of the stress normalized by the flow
stress of the phases, as a function of the strain-rate-sensitivity. The equivalent applied stress has been set
equal to the effective flow stress for the rigid-perfectly plastic case, i.e. 6. = 6o(m = 0), where 6, is given by
(42). As before, the stress fluctuations are isotropic for the linear case, and the anisotropy increases with
decreasing m, though this time they do not vanish for m = 0. Note that they are higher in the perpendic-
ular direction for all values of m. The average stress in the matrix is always below the flow stress af)U,
whereas the average stress in the fibers is always above the flow stress (r(()>, except for m = 0 where
) = o . In Fig. 8b we can see the stresses as a function of the concentration, for two values of m (0, 0.1).
Again, we observe that the stress fluctuations vanish when ¢® = 0, and they increase monotonically (in
both directions) with the concentration of fibers.

Some interesting observations can be made for the rigid-perfectly plastic limit (m = 0). As in the case of
stronger fibers, there is no duality gap in this limit, for any contrast and concentration of fibers. Since now
it is the average strain in the matrix that goes to zero, the stress in this phase can take any value from zero to
the flow stress, a(()l), and so we should expect a more complicated stress field than in the case of stronger
ﬁbers Moreover since &) # &), the moduli tensor of the linearized matrix is not the tangent moduli, i.e.

D £ LY, and that is why the new and the old second-order estimates do not coincide in this case.
Although the average strain in the matrix is zero, the matrix does deform—through the strain fluctuations!
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Fig. 8. Phase averages and fluctuations of the stress, normalized by the flow stress a((]') of the corresponding phase, for a contrast of 5:
(a) as a function of the strain-rate-sensitivity for a concentration of 25%; (b) as a function of the fiber concentration for several values
of m. The equivalent applied stress 6. has been set equal to the value of 6, at m = 0. Labels 1 and 2 refer to the matrix and fibers,
respectively.

Fig. 6b shows that there is a weakening effect due to weaker fibers. Note that the effective flow has an
infinite slope at zero fiber concentration. In fact, the dilute expansion of expression (42) can be shown to be:

4/3
@, 3, /(ﬁ)” (46)
W2 ) 7)o

which has an infinite derivative at ¢®) = 0. As first suggested by Drucker (1966), when the inclusions are
weaker than the matrix the shear bands tend to go through the inclusions (see Fig. 5b). This deformation
mechanism for a periodic three-dimensional porous medium with a dilute concentration of spherical pores
leads to a prediction for the effective flow stress proportional to 1 — oc(c<2))(2/ 3. On the other hand, for
periodic two-dimensional porous media with dilute concentrations of cylindrical pores, Drucker obtained a
similar expression, but with an exponent of 1/2, instead of 2/3. The second-order estimates generated in this
work predict an exponent of 2/3 for the case of randomly distributed cylindrical voids. This is different from
Drucker’s prediction, but it is not clear at this stage what the effect of randomness versus periodicity of the
microstructure is on this exponent. However, recent numerical simulations of porous media based on limit
analysis, suggest that the exponent should be between 1/2 and 2/3 (Pastor and Ponte Castaneda, 2002).
These simulations consist of finite element discretizations of a hollow cylinder, a commonly used model for
porous media, subject to two different types of boundary conditions. Results corresponding to uniform
stress lead to the lower exponent, whereas uniform strain results seem to be consistent with a 2/3 exponent.
In any event, the important thing to realize is that the exponent would be expected to be less than 1, because
of the strong interactions between inclusions, due to the shear bands, even at very low concentrations.

Furthermore, the stress and strain fields exhibit peculiar behaviors in this limit. Fig. 8b shows that as
c® — 0, the average stress tends to the corresponding value of the flow stress in the given phase, not only in
the weaker but also in the stronger phase. Since the stress cannot be higher than the flow stress for m = 0,
this implies that the stress fields become uniform in both phases. In fact, the stress fluctuations go to zero
like (¢®)*? and (¢?)'?, in the parallel and perpendicular directions, respectively. On the other hand,
Fig. 7b shows that the strain fluctuations blow up as ¢® — 0, which is unexpected. The question arises as to
whether the fluctuations really do go to infinity when the material is actually more and more homogeneous,
or if this is an artifact of the approximation. The answer to this interesting question, which will be pursued
in future work, is probably linked to the strong interactions among the fibers, even in the dilute limit.
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6. Concluding remarks

The new version of the second-order method of Ponte Castaneda (2002a) was used to estimate the ef-
fective behavior of power-law fibrous composites with arbitrary heterogeneity contrast subject to plane-
and anti-plane strain loading conditions. Estimates of the Hashin—Shtrikman type for the macroscopic
behavior, along with corresponding estimates for the strain and stress fluctuations, were presented and
discussed. The new estimates improve on prior estimates arising from an earlier version of the second-order
method (that did not incorporate the field fluctuations) in two ways. First, the new estimates, which are
exact to second order in the heterogeneity contrast, were found to satisfy rigorous bounds, namely the
variational upper bound and the Reuss lower bound. Second, although there is still a difference between the
strain and stress-based estimates—the so-called duality gap—it is smaller than for the earlier estimates, and
perhaps even more interestingly, is found to vanish in the rigid-perfectly plastic case, for any contrast and
concentration of fibers. On the other hand, the field fluctuations, which are known to be isotropic when the
material behavior is linear, were found to become progressively more anisotropic as the nonlinearity
increases.

Simple expressions for the strongly nonlinear rigid-perfectly plastic limit were derived and studied in
detail. The resulting predictions seem to be consistent with deformation mechanisms involving shear bands.
In the fiber-reinforced case, this translated into no reinforcement effect, and infinite strain fluctuations were
predicted in the matrix. In the case of weaker fibers, the dilute limit shows a dependence of the effective
property on the concentration of fibers of the type 6,/ af)l) ~1-— ac(c<2>)2/ *, which is not in exact agreement
with Drucker’s results for periodic media, but it is closer and more realistic than previous estimates. This is
a sensitive limit where both phases are at yield, and the strain fluctuations in the matrix blow up. The
question remains open as to what are the implications of this result.

The effect of tension along the fibers will be considered in future work in an attempt to generate the yield
surface for general loading conditions. The use of self-consistent estimates for the linear comparison
composite would allow the incorporation of information about the fluctuations in both phases, and the
corresponding nonlinear estimates would be expected to be more accurate for high concentration of in-
clusions, at least for certain types of symmetric microstructures. This problem will also be addressed in
future work.
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